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Abstract: Bayesian Optimization (BO) has become a core method for solving
expensive black-box optimization problems. While much research focussed
on the choice of the acquisition function, we focus on online length-scale
adaption and the choice of kernel function. Instead of choosing hyperpa-
rameters in view of maximum likelihood on past data, we propose to use the
acquisition function to decide on hyperparameter adaptation more robustly
and in view of the future optimization progress. Further, we propose a par-
ticular kernel function that includes non-stationarity and local anisotropy and
thereby implicitly integrates the efficiency of local convex optimization with
global Bayesian optimization. Comparisons to state-of-the art BO methods
underline the efficiency of these mechanisms on global optimization bench-
marks.

Ideas & Related Work
Lengthscale Cool-Down based on acquisition function (AR)

• Choose hyperprior to accelerate optimization→ more acquisition
• Neglect model fit up to a best case correlation lower bound

Mixed-Global-Local (MGL) Kernel

• A novel kernel function to represent local convex polynomial regions
• Implies optimization steps analogous to classical (quasi-Newton-type)

model-based optimization combined with global Bayesian optimization

Related Work

• Ziyu Wang, et al (2016) Bayesian optimization in a billion dimensions via random embeddings,
Journal of Artificial Intelligence Research

• Hossein Mohammadi, et al (2016) Small ensembles of kriging models for optimization, arXiv
preprint arXiv:1603.02638

• Ruben Martinez-Cantin (2015) Locally-Biased Bayesian Optimization using Nonstationary
Gaussian Processes, NIPS workshop on Bayesian Optimization

General Bayesian Optimization
1. Given an initial set of samples {X1,y1}, prior GP(cµ, k) and acquisition function α

2. iterate n = 1 until N :
3. perform model adaption with {Xn,yn}
4. xn = argminx∈D αn(x) and extend set {X1,y1} by evaluation of objective function at xn

5. return best observation

Length-Scale Cool Down

Choosing the hyperprior to accelerate optimization

• Online length-scale cool down method based on the acquisition function
instead of model selection, like e.g. using maximum-likelihood

• Let

αr,n :=
α∗(l̃n)

α∗(ln−1)
(1)

be the alpha-ratio, where α∗(l) = minx∈D αn(x; l) is the optimal aquisition
with length-scale l and l̃n < ln−1 is a smaller candidate length-scale

• Typically a smaller length-scale leads to larger variance⇒ αr,n > 1

⇊ Turn this argument around

If αr,n is not substantially larger than 1, decreasing the length-scale will
typically not yield better chances for progress in the optimization

• Lower bound based on minimal correlation for ”best case” set X̄n:
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With δd,n and a desired best case correlation c̄, we get for the Squared
Exponential kernel:

l̄n(d, c̄) =

√
− 1

2 log(c̄)
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Γ(32)
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• Pseudo code for adjusting length-scale
1. calculate lower bound l̄n(d, c̄) (Eq. 2)
2. choose l̃n← max{ln−1/2, l̄n(d, c̄)}
3. α∗(ln−1)← minx∈D αn(x; ln−1) acquisition with current length-scale ln−1
4. α∗(l̃n)← minx∈D αn(x; l̃n) acquisition with l̃n
5. αr,n← α∗(l̃n)/α∗(ln−1)
6. based on a threshold on αr,n keep lengthscale or reduce to l̄n

• Significant performance improvements in case of model miss-
specification:
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Correlation adaption: Counter example

LOO-CV

Alpha Ratio

Optimal

Mixed-Global-Local (MGL) Kernel

Formalize the intuition: How to model a (local) minimum?

• Given a data set D = {(xi, yi)}, we call a convex subset U ⊂ D a convex
neighborhood if the solution of the regression problem

{β∗0 ,β∗1, B∗} = argmin
β0,β1,B

∑
k:xk∈U

[
(β0 + βT

1 xk +
1

2
xT
kBxk)− yk

]2
(xk ∈ U the data points in U) has a positive definite Hessian B

• The Mixed-Global-Local (MGL) kernel is given by

kMGL(x,x
′) =


kq(x,x

′), x,x′ ∈ Ui,
ks(x,x

′),x /∈ Ui,x′ /∈ Uj
0, else

for any i, j, where ks is a stationary-isotropic kernel and

kq(x,x
′) = (xTx′ + 1)2

the quadratic kernel
• Construct Ui by KNN-search: Start at each sample point and gradually

increase K, check KNN for qualifying as Ui candidate. Choose best Ui’s
• Outperforms even ”Optimal” model parameters
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MGL kernel Example
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Alpha Ratio+MGL Kernel

Optimal

Results

• Results for combined length-scale cool down based on alpha ratio and
MGL kernel (AR+MGL) vs. Predictive Entropy Search (PES), Infinite
Metric GP Optimization (IMGPO), and Expected Improvement (EI) with
’optimal’ chosen hyperparameters

• Median of 32 runs, variance estimate via Bootstrapping
• Software and extended paper version can be found at www.kimpeter.de
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Quadratic 2D
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Rosenbrock
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Branin-Hoo
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Hartmann 3D
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Exponential 3D
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Exponential 4D
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