Advancing Bayesian Optimization: The Mixed-Global-Local (MGL) Kernel and Length-Scale Cool Down

Kim Peter Wabersich, Marc Toussaint NIPS BayesOpt Workshop, December 2016 _____

Machine Learning & Robotics Lab, University of Stuttgart, wabersich@kimpeter.de, marc.toussaint@informatik.uni-stuttgart.de

Abstract: Bayesian Optimization (BO) has become a core method for solving expensive black-box optimization problems. While much research focussed on the choice of the acquisition function, we focus on online length-scale adaption and the choice of kernel function. Instead of choosing hyperparameters in view of maximum likelihood on past data, we propose to use the acquisition function to decide on hyperparameter adaptation more robustly and in view of the future optimization progress. Further, we propose a particular kernel function that includes non-stationarity and local anisotropy and thereby implicitly integrates the efficiency of local convex optimization with global Bayesian optimization. Comparisons to state-of-the art BO methods underline the efficiency of these mechanisms on global optimization bench-

- Pseudo code for adjusting length-scale
 - calculate lower bound $\overline{l}_n(d, \overline{c})$ (Eq. 2)
 - 2. choose $\tilde{l}_n \leftarrow \max\{l_{n-1}/2, \bar{l}_n(d, \bar{c})\}$
 - 3. $\alpha^*(l_{n-1}) \leftarrow \min_{\boldsymbol{x} \in \mathcal{D}} \alpha_n(\boldsymbol{x}; l_{n-1})$ acquisition with current length-scale l_{n-1}
 - 4. $\alpha^*(l_n) \leftarrow \min_{\boldsymbol{x} \in \mathcal{D}} \alpha_n(\boldsymbol{x}; l_n)$ acquisition with l_n
 - 5. $\alpha_{r,n} \leftarrow \alpha^*(l_n)/\alpha^*(l_{n-1})$
 - 6. based on a threshold on $\alpha_{r,n}$ keep lengthscale or reduce to \overline{l}_n
- Significant performance improvements in case of model missspecification:

marks.

Ideas & Related Work

Lengthscale Cool-Down based on acquisition function (AR)

- Choose hyperprior to accelerate optimization \rightarrow more acquisition
- Neglect model fit up to a *best case* correlation lower bound

Mixed-Global-Local (MGL) Kernel

- A novel kernel function to represent local convex polynomial regions
- Implies optimization steps analogous to classical (quasi-Newton-type) model-based optimization combined with global Bayesian optimization

Related Work

- Ziyu Wang, et al (2016) Bayesian optimization in a billion dimensions via random embeddings, Journal of Artificial Intelligence Research
- Hossein Mohammadi, et al (2016) Small ensembles of kriging models for optimization, arXiv preprint arXiv:1603.02638
- Ruben Martinez-Cantin (2015) Locally-Biased Bayesian Optimization using Nonstationary Gaussian Processes, NIPS workshop on Bayesian Optimization

General Bayesian Optimization

- 1. Given an initial set of samples $\{X_1, y_1\}$, prior $\mathcal{GP}(c_{\mu}, k)$ and acquisition function α
- 2. iterate n = 1 until N:
- perform model adaption with $\{X_n, y_n\}$

Mixed-Global-Local (MGL) Kernel

Formalize the intuition: How to model a (local) minimum?

Given a data set $D = \{(x_i, y_i)\}$, we call a convex subset $\mathcal{U} \subset \mathcal{D}$ a convex neighborhood if the solution of the regression problem

$$\{\beta_0^*, \boldsymbol{\beta}_1^*, B^*\} = \operatorname*{argmin}_{\beta_0, \boldsymbol{\beta}_1, B} \sum_{k: \boldsymbol{x}_k \in \mathcal{U}} \left[(\beta_0 + \boldsymbol{\beta}_1^T \boldsymbol{x}_k + \frac{1}{2} \boldsymbol{x}_k^T B \boldsymbol{x}_k) - y_k \right]^2$$

 $(x_k \in \mathcal{U}$ the data points in \mathcal{U}) has a positive definite Hessian B

The Mixed-Global-Local (MGL) kernel is given by

$$k_{\mathsf{MGL}}(\boldsymbol{x}, \boldsymbol{x}') = \begin{cases} k_q(\boldsymbol{x}, \boldsymbol{x}'), \ \boldsymbol{x}, \boldsymbol{x}' \in \mathcal{U}_i, \\ k_s(\boldsymbol{x}, \boldsymbol{x}'), \boldsymbol{x} \notin \mathcal{U}_i, \boldsymbol{x}' \notin \mathcal{U}_j \\ 0, \ \mathsf{else} \end{cases}$$

for any i, j, where k_s is a stationary-isotropic kernel and

4. $\boldsymbol{x}_n = \operatorname{argmin}_{\boldsymbol{x} \in \mathcal{D}} \alpha_n(\boldsymbol{x})$ and extend set $\{X_1, \boldsymbol{y}_1\}$ by evaluation of objective function at \boldsymbol{x}_n 5. return best observation

Length-Scale Cool Down

Choosing the hyperprior to accelerate optimization

- Online length-scale cool down method based on the acquisition function instead of model selection, like e.g. using maximum-likelihood
- Let

$$\alpha_{r,n} := \frac{\alpha^*(\tilde{l}_n)}{\alpha^*(l_{n-1})} \tag{1}$$

be the alpha-ratio, where $\alpha^*(l) = \min_{\boldsymbol{x} \in \mathcal{D}} \alpha_n(\boldsymbol{x}; l)$ is the optimal aquisition with length-scale l and $l_n < l_{n-1}$ is a smaller *candidate* length-scale

• Typically a *smaller* length-scale leads to *larger* variance $\Rightarrow \alpha_{r,n} > 1$

\parallel Turn this argument around

If $\alpha_{r,n}$ is not substantially larger than 1, decreasing the length-scale will typically not yield better chances for progress in the optimization

• Lower bound based on minimal correlation for "best case" set \bar{X}_n :

$k_a(x, x') = (x^T x' + 1)^2$

the quadratic kernel

- Construct \mathcal{U}_i by KNN-search: Start at each sample point and gradually increase K, check KNN for qualifying as \mathcal{U}_i candidate. Choose best \mathcal{U}_i 's
- Outperforms even "Optimal" model parameters

Results

- Results for combined length-scale cool down based on alpha ratio and MGL kernel (**AR+MGL**) vs. Predictive Entropy Search (**PES**), Infinite Metric GP Optimization (**IMGPO**), and Expected Improvement (**EI**) with 'optimal' chosen hyperparameters
- Median of 32 runs, variance estimate via Bootstrapping

design criterion for best-case sample set

With $\delta_{d,n}$ and a desired best case correlation \bar{c} , we get for the Squared Exponential kernel:

(2)

Software and extended paper version can be found at www.kimpeter.de

