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Abstract

We consider economic control of systems, which are optimally operated at
some periodic orbit. In particular, our motivation is to economically control
supply chain networks. First we provide a detailed analysis of optimal periodic
operation in case of linear periodic time varying systems with convex cost
functionals. In case of piece-wise linear cost functionals we derive an explicit
linear programming formulation in order to verify optimal closed loop oper-
ation at a given periodic orbit as well as suboptimal operation for any other,
feasible system trajectory off that very orbit. Furthermore, we present a novel
economic model predictive control scheme for general non-linear systems
based on a terminal cost and a terminal constraint set. Besides recursive
feasibility and asymptotic stability of the control scheme, we strictly proof an
asymptotic average performance which is not worse than the performance
value of the systems optimal periodic orbit. Using a tube-based approach,
we extend our method to become applicable in the presence of unknown but
bounded disturbances. In addition, we propose the concept of robust optimal
periodic operation which turns out to essentially improve the closed loop
performance for the supply chain example considered, under the presence of
disturbances. Throughout this work, we illustrate each new concept using
a simple supply chain model. Lastly, we perform an in-depth experimental
analysis of a more complex supply chain network consisting of a supplier, a
transportation network and three retail stores. We compare our nominal and
robust control schemes with an existing, terminal cost and terminal set free
method.
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Zusammenfassung

Wir betrachten die ökonomische Regelung von Systemen, die optimal pe-
riodisch betrieben werden. Die Motivation der vorliegenden Arbeit liegt
insbesondere in der ökonomischen Regelung von Versorgungsnetzwerken.
Zuerst analysieren wir optimales, periodisches Verhalten im Fall von linearen
periodischen zeitvarianten Systemen mit konvexer Kostenfunktion. Im Falle
von stückweise definierter linearer Kostenfunktionale stellen wir ein explizites,
lineares Optimierungsproblem auf, mit welchem optimales Systemverhalten
an einem speziellen periodischen Systemorbit gezeigt werden kann. Des
Weiteren kann damit suboptimales Systemverhalten entlang aller anderen,
möglichen Systemorbits verifiziert werden. Darüber hinaus stellen wir ein
neuartiges ökonomisches modellprädiktives Regelungsverfahren vor, welches
auf generelle nichtlineare Systeme angewendet werden kann und auf End-
kosten und einer Endregion basiert. Neben rekursiver Lösbarkeit und asympto-
tischer Stabilität der Regelungsmethode beweisen wir, dass die asymptotische
durchschnittliche Leistung nicht schlechter als die des optimalen periodischen
Systemorbits ist. Unter Verwendung eines "röhrenbasierten" Ansatzes erweit-
ern wir unsere Regelungsmethode dahingehend, dass diese auch im Fall von
unbekannten begrenzten Störungen anwendbar ist. In diesem Zuge führen wir
das Konzept des robusten optimalen periodischen Orbits ein, um die Leistung
des geschlossenen Regelkreises im Fall von Störungen zu verbessern. Durchge-
hend wird jedes neue Konzept welches wir vorstellen anhand eines einfachen
Versorgungsnetzwerkes veranschaulicht. Abschließend wird ein komplexeres
Versorgungsnetzwerk analysiert, welches aus einem Zulieferer, einem Trans-
portationsnetzwerk und drei Einzelhändlern besteht. Wir vergleichen unsere
nominellen und robusten Regelungsverfahren mit einer existierenden Methode
ohne Endkosten und Endregion.

4



Contents

1 Introduction 7
1.1 Notation and basic definitions . . . . . . . . . . . . . . . . . . 8
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Central example: Simple supply chain network . . . . . . . . . 11

2 Optimal periodic operation 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Dissipativity and optimal periodic operation . . . . . . . . . . . 20
2.3 Strong duality, uniqueness and (strict) dissipativity . . . . . . . 23
2.4 Linear cost functionals and (strict) dissipativity . . . . . . . . . 28
2.5 Example: Simple supply chain network . . . . . . . . . . . . . 39

3 Economic MPC for optimal periodic operation 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Assumptions and algorithm . . . . . . . . . . . . . . . . . . . . 46
3.3 Recursive feasibility . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Asymptotic average performance . . . . . . . . . . . . . . . . . 49
3.5 Asymptotic stability of the optimal periodic orbit . . . . . . . . 51
3.6 Related work: Economic MPC without terminal constraints . . 58
3.7 Example: Simple supply chain network . . . . . . . . . . . . . 61

4 Tube-based robust economic MPC for periodic operation 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Invariant error sets . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Robust periodic cost functional . . . . . . . . . . . . . . . . . . 72
4.4 Assumptions and algorithm . . . . . . . . . . . . . . . . . . . . 74
4.5 Recursive feasibility and asymptotic average performance . . . 75
4.6 Robust optimal periodic operation . . . . . . . . . . . . . . . . 76
4.7 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.8 Outline: Tube-based robust economic MPC without terminal

constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.9 Example: Simple supply chain network . . . . . . . . . . . . . 82

5



Contents

5 Application: Complex supply chain network 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Optimal operation . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Nominal economic model predictive control . . . . . . . . . . . 100
5.5 Robust economic model predictive control . . . . . . . . . . . 102

6 Conclusion 111

6



1 Introduction

This work consists of four parts. Each part begins with a respective introduction
which also links our results to existing literature. We use a simple supply
chain example for illustrating each new concept on a common basis, before
presenting the actual application in the last part.

Optimal operation | Chapter 2
How should the system be operated? Which periodic orbit is optimal? Is it
possible to develop an algorithm for verifying (unique) optimal operation in a
linear time varying setting?

Economic model predictive control for optimal periodic operation using
terminal constraints | Chapter 3
How to design an online optimization problem in order to guarantee the best,
periodic system performance and convergence to the best periodic orbit?

Robust economic model predictive control for robust optimal periodic
operation | Chapter 4
How to improve the performance and ensure safe periodic system operation under
the presence of disturbances?

Application to a supply chain network | Chapter 5
How to apply the theoretical results using the example of a supply chain network?
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1 Introduction

1.1 Notation and basic definitions

In the following we introduce common notations and definitions, repetitively
used.

Set of integers in the interval [a,b] ⊂ R

I[a,b]. (1.1)

Set of integers in the interval greater than or equal to a

I≥a. (1.2)

The distance between x ∈ Rn and a setW ⊆ R

|x|W := inf
a∈W
|x− a|. (1.3)

For a set A ⊆ Rn and ε > 0, define the neighbourhood

Bε(A) := {x ∈ Rn : |x|A ≤ ε}. (1.4)

Definition 1.1.1 (ClassK functions). A continuous function α : [0,a)→ [0,∞)
is said to belong to class K if it is strictly increasing and α(0) = 0. It is said to
belong to class K∞ if it belongs to class K, a =∞ and α(r)→∞ as r →∞.
�

Definition 1.1.2 (Class L functions). A continuous function σ : [0,∞) →
(0,∞) is said to belong to class L if it is strictly decreasing and limr→∞ σ(r) =
0. �

Definition 1.1.3 (Class KL functions). A continuous function β : [0,∞) ×
[0,∞)→ [0,∞) is said to belong to class KL if it is class K in its first argument
and class L in its second argument. �

1.2 Preliminaries

Consider systems of the type

x(k + 1) = f(x(k), u(k), w(k)), x(0) = x, k ∈ I≥0 (1.5)
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1.2 Preliminaries

with f : Rn × Rm → Rn subject to pointwise-in-time state and input con-
straints1 x(k) ∈ X ⊆ Rn and u(k) ∈ U ⊆ Rm. And unkown but bounded dis-
turbances w(k) ∈ W ⊂ Rq. Given a control sequence u = {u(0),...,u(K)} ∈
UK+1 (K ∈ I≥0 can attain∞) we denote the corresponding solution of (1.5)
by xu = {xu(0,x),..., xu(K+1,x)} ∈ XK+2 with initial condition xu(0,x) = x.
Consider a constant disturbance W = {0} for all k ∈ I≥0. Then for a given
x ∈ X the set of all feasible control sequences of length T ∈ I≥0, denoted
by UT (x) (T can attain ∞), satisfies u(k) ∈ U for all k ∈ I[0,T−1] and
xu(k,x) ∈ X for all k ∈ I[0,T ].

System (1.5) is endowed with a stage cost function

` : X× U→ R (1.6)

that is assumed to be bounded from below on X×U. Without loss of generality
we assume that 0 ≤ infx∈X,u∈U `(x,u).

Definition 1.2.1 (Nominal feasible P -periodic orbits [19]). Consider W =
{0}. A set of state and input pairs Π = {(xp0,u

p
0),...,(xpP−1, u

p
P−1)} with

P ∈ I≥1 is called a nominal feasible P -periodic orbit of system (1.5) if xpk ∈ X,
upk ∈ U, and xpk+1 = f(xpk,u

p
k,0) for all k ∈ I[0,P−2] and xp0 = f(xpP−1,u

p
P−1,0).

It is called a minimal P -periodic orbit if xpk1 6= xpk2 with k1 6= k2. The
projection of Π on X is denoted by ΠX := {xp0,...,x

p
P−1} and the projection of

Π on U by ΠU := {up0,...,u
p
P−1} respectively. SPΠ denotes the set of all nominal

feasible P -periodic orbits. �

Remark 1.2.2 (Identification of the optimal orbit). The minimal nominal
optimal P -periodic orbit is obtained by solving

{P ∗,Π∗} = argmin
P∈I≥1,Π∈SP

Π

1

P

P−1∑
k=0

`(xpk,u
p
k) (1.7)

and choosing the solution pair with the smallest value for P in case of non-
uniqueness. The cost

∑P−1
k=0 `(x

p
k,u

p
k) will be denoted by ˜̀

Π. �

Definition 1.2.3 (P -step system [11]). The (general) P -step system of sys-
tem (1.5) is defined with states x̃ := (x0,...,xP−1) ∈ XP , inputs ũ :=
(u0,...,uP−1) ∈ UP , disturbances w̃ := (w0,...,wP−1) ∈WP and dynamics

fP (x̃, ũ, w̃) := (f(xP−1,u0,w0), f(f(xP−1,u0,w0),u1,w1), ...) (1.8)

1 All the results presented in this work can easily be extended to coupled state and input constraints.
We consider the decoupled case for easier readability.
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1 Introduction

which defines2

x̃+ = fP (x̃, ũ,w̃). (1.9)

The initial condition for a solution of system (1.9) is xP−1(0) = x ∈ X
(initial conditions of other states are not relevant for the solution). Given
an initial condition x, a control and disturbance sequence u ∈ UPK and
w ∈WPK , K ∈ I≥1, the corresponding solution is denoted by3

x̃u(k, x) =


(0,..,0,xu(k − P + i,x),...,xu(k,x)),

for k − P + i = 0, i ∈ I[0,k−1],

(xu(k − P + 1,x),xu(k − P + 2,x),..,xu(k,x),

else.

Further, the stage cost function for the P -step system is given by

˜̀(x̃, ũ) :=

P−1∑
i=0

`(xũ(i, xP−1),ui) (1.10)

which possibly corresponds to the cost along a P -periodic orbit. However,
in the non-periodic case, the cost corresponds to the sum of P -stage costs
along the original system (1.5), when starting at xP−1 and applying the inputs
ui, i = 0,..,P − 1. As a measure of distance between a state and input pair of
the P -step system {x̃, ũ} and a nominal P -periodic orbit Π of system (1.5) we
define via the distance measure (1.3)

|(x̃, ũ)|Π :=

P−1∑
i=0

|(xũ(i, xP−1), ui)|Π (1.11)

and

|x̃|ΠX :=

P−1∑
i=0

|xũ(i, xP−1)|ΠX . (1.12)

�
2 Given a current state x̃, the expression x̃+ indicates the successor, x̃− the predecessor P -step

state and ũ+ the sucessor, and ũ− the predecessor inputs.
3 The definition implies x̃u(k + 1,x) 6= fP (x̃u(k,x),ũ, 0) and x̃u(k + P,x) =

fP (x̃u(k,x),ũ, 0).
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1.3 Central example: Simple supply chain network

Remark 1.2.4. Note that any feasible nominal periodic orbit Π ∈ SPΠ of system
(1.5), is an equilibrium point of the P -step system. I.e.

fP
(
(xp0, ..., x

p
P−1), (up0, ...,u

p
P−1),0

)
= (xp0, ...,x

p
P−1).

�

In the following we assume that SPΠ is non-empty and that a (possibly
non-unique) optimal trajectory exists that satisfies (1.7).

Definition 1.2.5 (Rotated P -step states and inputs). Consider a periodic orbit
Π and let

Π̃ :=
{(

(xpk,u
p
k),..,(xpP−1,u

p
P−1),..,(xpk−1,u

p
k−1)

)
: k ∈ I[0,P−1]

}
be the set of phase shifted periodic orbits according to Π. We denote the
corresponding projections on the states and inputs by Π̃X and Π̃U. �

1.3 Central example: Simple supply chain network

Each new concept and method presented in this work will be illustrated using
the example of (economically) controlling a simple supply chain network. It
is designed to be as simple as possible while still containing all the charac-
teristics considered in this work. In particular this includes a graph and real
valued system state structure, additive disturbances and an optimal operating
behavior that is periodic. The relevance of the considered model for the field
of supply chain networks is discussed in Sec. 5.1. The simple supply chain
network consists of one supplier, one retailer, and one truck for transportation
of the goods, see Fig 1.1.
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1.3 Central example: Simple supply chain network

Dynamics

We use the following notations: xS,1(k) ∈ R represents the number of goods
in the supplier production process, xS,2(k) ∈ R the number of goods in the
supplier storage, xT,P (k) ∈ {0,1} describes the truck position, xT,L(k) ∈ R
the number of goods which are carried by the truck and xR(k) ∈ R the
number of goods in the retailer’s storage. Inputs are represented using the
truck navigation uT,P ∈ {0,1}, the truck loading of goods uT,L ∈ R, and the
supplier production request (number of goods) uS ∈ R as well as external
disturbances (number of goods) w ∈W where w(k) = w∗+ε with ε ∼ Yε with
probability distribution P (ε) that describes the costumer demand at the retail
store. We assume E[ε] = 0 from which follows that we have E[w(k)] = w∗.
The corresponding switched system dynamics is given as
xS,1(k + 1)
xS,2(k + 1)
xT,P (k + 1)
xT,L(k + 1)
xR(k + 1)

 =


0 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

=:A


xS,1(k)
xS,2(k)
xT,P (k)
xT,L(k)
xR(k)


︸ ︷︷ ︸

=:x(k)

+


0
0

fT,P (xT,P (k), uT,P (k))
0
0


︸ ︷︷ ︸

=:fG(x(k),u(k))

+

Bσ(k)

[
uT,L(k)
uS(k)

]
︸ ︷︷ ︸

=:uB(k)

+w(k) (1.13)

with states x(k), inputs u(k) = [uT,P (k),uT,L(k),uS(k)]> and disturbance
expectation

w∗(k) = [0,0,0,0,− 1]>. (1.14)

The switched input matrix Bσ(k) is defined as

Bσ(k) ∈ {B0,B1} , B0 =


0 1
−1 0
0 0
1 0
0 0

 , B1 =


0 1
0 0
0 0
1 0
−1 0

 ,

together with the switching policy σ(k) := xT,P (k). The dynamics fG of the
truck are encoded in a Graph, see Fig. 1.2. The graph encodes the supply
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1 Introduction

xT,P = 0 xT,P = 1

uT,P = 1

uT,P = 0

uT,P = 1

uT,P = 0

Figure 1.2: Dynamics fT,P of the truck’s position. Possible state (position)
values are represented by nodes and feasible transitions by edges.

network structure and the graph dynamics describing how the truck can travel.
In short we have dynamics of the form

x(k + 1) = Ax(k) +Bσ(k)uB(k) + fG(x(k),u(k)) + w(k) (1.15)

with x ∈ X and u ∈ U. We will use this representation for solving the
upcoming mixed integer finite horizon control problem. Let a ∈ R, a > 100
be a finite but arbitrarily large constant. The constraints are given by

0 ≤ xS,1 ≤ a
0 ≤ xS,2 ≤ a
0 ≤ xT,L ≤ 10

−a ≤ xR ≤ a. (1.16)

Note that we can also rewrite the system dynamics as

x(k + 1) = Āx(k) + B̄u(k) + w(k) (1.17)

by incorporating the graph structure as coupled (non-convex) state and input
constraints. By doing so we can e.g. state that the dynamics are continuous,
which is required for various control methods. Note, that the resulting input
and state constraints do not have an interior.

Stage cost

The stage cost can be divided into three parts:

1. The production and storage cost is defined by `S(x,u) := xS,1 + 0.5xS,2.

2. The cost for truck load and driving reads `T (x,u) := xT,L + uT,P .

14



1.3 Central example: Simple supply chain network

3. For the retail store we have a storage cost for a positive number of goods
in the store. A larger demand than available goods (negative number of
goods), which results in unhappiness of the customers, is modelled by a
high cost. More precisely,

`R(x, u) :=

{
−10xR, xR < 0

xR, xR ≥ 0.
(1.18)

In summary we end up with the stage cost

`(x,u) = `S(x,u) + `T (x,u) + `R(x, u)

=

{
xS,1 + 0.5xS,2 + xT,L + uT,P − 10xR, xR < 0

xS,1 + 0.5xS,2 + xT,L + uT,P + xR, xR ≥ 0
(1.19)

which is continuous and bounded on X× U.

Identification of the optimal periodic orbit candidate

We solve for the optimal periodic orbit as described in Rem. 1.2.2 approxi-
mately in terms of finite P using the dynamics (1.13), stage cost (1.19) and
the expected (nominal) disturbance (1.14). We obtain

P ∗ = 2,

Π∗ =






2
0
0
0
1

 ,
1

2
0


 ,




0
0
1
2
0

 ,
 1
−2
2



 (1.20)

with average cost 1
2

∑1
k=0 `(x

p∗
k ,u

p∗
k ) = ˜̀

Π∗ = 3.5 along the periodic orbit.
A rigorous method for verifying that (1.20) is not only an approximate but
exact solution (in terms of infinitely many possible period lengths P ) will be
introduced in the next chapter.

Note, that for w∗(k) = [0,0,0,0,0]> we obtain the origin (P = 1) as solution,
see Fig. 1.3 (a). This allows us to state the educated guess, that the optimal
operation depends on the disturbance in the example considered. The different
resulting orbits with corresponding expected disturbance values are illustrated
in Fig. 1.3.
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1 Introduction

Interestingly in Fig. 1.3 (c), the truck is used as extended storage for the
retail store in iterations k = 1 and k = 2. The solution in this particular
case is not unique, because the storage cost for the truck and the retail store
are chosen to be identically (1.19). Nevertheless, it is cheaper to use the
storage (either of the truck or the retail store) than to drive more frequently
between the supplier and the retail store. Fig. 1.3 (d) demonstrates that
we can easily get complex periodic orbits, which also raises the question if
chaotic behaviour (P ∗ → ∞) could be optimal. This underlines the need
for an analytical verification of optimal operation from both views: practical
and theoretical, so that we can choose a control strategy appropriately for
predictable closed loop behaviour and the best possible performance.
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1.3 Central example: Simple supply chain network
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Figure 1.3: Different approximate optimal periodic orbits for system (1.13).
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2 Optimal periodic operation

2.1 Introduction

We wish to find a method in order to decide if any given candidate P -periodic
orbit of a certain system class is the systems possible best and unique operating
behaviour. By system orbit we mean a P -periodic input and state trajectory.
We consider convex constrained, linear, P -periodic, time varying (LTV) sys-
tems with respect to convex cost functionals, as well as the special case of
piecewise defined, convex linear cost functionals. We begin with a saddle
point interpretation of the so called dissipativity criterion. By investigating the
uniqueness of the saddle point, we establish the relation to strict dissipativity.
For the more specialized case of piece-wise linear stage cost functionals, as in
Sec. 1.3, we show that the criterion can be verified efficiently by solving two
different linear programs. Last we derive the explicit structure of those linear
programs.

One may ask why we need a method for verification of an optimal solution
in a linear problem setting. Despite the fact that we can globally optimal
solve for input and state trajectories for a fixed period length P , we can not
easily guarantee that the solution obtained is 1. unique and 2. that there does
not exist an equal or better orbit with a larger period P . Both properties are
mainly interesting from an analytic point of view and we want to mention, that
we can not solve the resulting online optimization problem for arbitrary long
time horizons anyway. Nevertheless, recent economic model predictive control
schemes e.g. [18], provide performance and asymptotic stability guarantees
which depend on this property by construction. Note, that all of the results
obtained can be easily applied to optimal steady state operation (P = 1) as
well.

The approach will be introduced in several steps. Following recent literature,
we introduce in Sec. 2.2 the relation between (unique) optimal periodic
operation, (unique) optimal steady state operation and (strict) dissipativity
with respect to a periodic orbit for general systems. In Sec. 2.3 we establish
the link between strict dissipativity, strong duality and uniqueness of a saddle
point in case of convex constrainted LTV systems with convex stage cost. In

19



2 Optimal periodic operation

Sec. 2.4 we consider the system class and stage cost from Sec. 1.3 (linear
system, piece-wise linear stage cost, polytopic constraints) and provide a
linear programming problem for verification of dissipativity and another linear
program for verification of strict dissipativity.

2.2 Dissipativity and optimal periodic operation

The concept of dissipativity for verifying whether or not a given periodic orbit
is a systems’ optimal operation was first introduced in [11]. The key is the
P -step system (Def. 1.2.3) that enables to leverage steady state analysis for
periodic analysis. I.e. one can show that steady state operation is (under
some additional controllability assumptions) optimal if and only if a certain
dissipativity condition is fulfilled [3]. A consequent proof for transferring the
criterion from the case of optimal steady state operation to periodic operation
is given in [19]. In the following we repeat the results that are relevant for
this and the following chapters.

Definition 2.2.1 (Optimal operation at Π∗ [19]). System (1.5) is optimally
operated at the feasible P ∗-periodic orbit Π∗ (Def. 1.2.1) if for each x ∈ X
and each u ∈ U∞(x) the following inequality holds:

lim inf
T→∞

∑T−1
k=0 `(xu(k,x),u(k))

T
≥ 1

P ∗

P∗−1∑
k=0

`(xp∗k , u
p∗
k ),

i.e., any feasible solution will result in an asymptotic average performance
which is at most as good as the average performance of the optimal periodic
orbit Π∗. Further, if system (1.5) is optimally operated at some P ∗ periodic
orbit Π∗ = {(xp∗0 , up∗0 ),...,(xp∗P∗−1, u

p∗
P∗−1)}, then Π∗ is necessarily an optimal

periodic orbit for system (1.5) and we have

1

P ∗

P∗−1∑
k=0

`(xp∗k , u
p∗
k ) = inf

P∈I≥0,Π∈SP
Π

1

P

P−1∑
k=0

`(xpk,u
p
k), (2.1)

where SPΠ denotes the set of all feasible P -periodic orbits according to Def.
1.2.1. �

In addition there is a slightly stronger property than optimal operation at
a certain optimal periodic orbit, namely suboptimal operation off periodic
operation.
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2.2 Dissipativity and optimal periodic operation

Definition 2.2.2 (Suboptimal operation off periodic operation [19]). System
(1.5) is uniformly suboptimally operated off periodic operation if it is optimally
operated at periodic operation and in addition there exist δ̄ > 0 and d ∈ K∞
such that for each δ > 0 and each ε > 0 there exists Rε,δ ∈ I≥0 such that
δ/Rε,δ ≥ d(ε) for all δ > δ̄ and for each T ∈ I≥0 at least one of the following
conditions holds:

TP−1∑
t=0

`(xu(t,x),u(t)) > T

P−1∑
k=0

`(xpk,u
p
k) + δ, (2.2)

#{t ∈ I[0,T−1] :

P−1∑
j=0

|xu(tP + j,x)|ΠX > ε} ≤ Rε,δ.

with #{A} indicating the number of elements contained in a set A. �

As mentioned before, the key ingredient in this section is to establish the
link between steady state and periodic operation using the P -step system from
Def. 1.2.3. This is achieved by the following lemma.

Lemma 2.2.3 (Optimal operation of P -step system [19]). Suppose that ˜̀ is
bounded from below on XP × UP . Then system (1.5) is optimally operated at a
P ∗-periodic orbit Π∗ (uniformly suboptimally operated off the P ∗-periodic orbit
Π∗) if and only if the corresponding P ∗-step system (Def. 1.2.3) is optimally
operated at steady-state (uniformly suboptimally operated off steady-state). �

Proof. The proof can be found in [19].

Lemma 2.2.3 allows to use ’classical’ optimal steady state analysis for peri-
odic behaviors, as e.g. in [3], which is based on the concept of dissipativity as
it was originally introduced in [7].

Definition 2.2.4 ((Strict) dissipativity with respect to a periodic orbit [11],
[19]). The P -step system (1.9) is dissipative with respect to a periodic orbit
Π and the supply rate

s(x̃, ũ) := ˜̀(x̃, ũ)−
P−1∑
k=0

`(xpk, u
p
k)

if there exists a storage function λ̃ : XP → R such that

λ̃(fP (x̃, ũ,0))− λ̃(x̃) ≤ s(x̃, ũ) (2.3)
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2 Optimal periodic operation

for all (x̃, ũ) ∈ Z̃0 with

Z̃0 := {(x̃, ũ) ∈ XP × UP |∃ṽ ∈ U∞(xP−1) s.t. ṽ(0) = ũ}. (2.4)

Furthermore it is strictly dissipative with respect to a periodic orbit Π if there
exits a function α ∈ K∞ such that

λ̃(fP (x̃, ũ,0))− λ̃(x̃) ≤ ˜̀(x̃, ũ)−
P−1∑
k=0

`(xpk,u
p
k)− α(|(x̃, ũ)|Π) (2.5)

for all (x̃, ũ) ∈ Z̃0. �

In the remainder we assume for simplicity that XP ×UP = Z̃0, i.e. U∞(x̃) 6=
∅ ∀x̃ ∈ XP . Given the notion of dissipativity above we state the following
sufficient characterization of optimal periodic orbits, inspired by steady state
analysis (just for the P -step system).

Corollary 2.2.5 (Sufficient condition for optimal periodic orbits [19]). Sup-
pose that ˜̀is bounded from below on XP×UP and define ˜̀

Π :=
∑P−1
k=0 `(x

p
k, u

p
k).

Then the following statements hold.

1. If the P -step system from Def. (1.2.3) is dissipative on XP × UP with
respect to the supply rate s(x̃, ũ) = ˜̀(x̃, ũ) − ˜̀

Π, then system (1.5) is
optimally operated at the periodic orbit Π.

2. If the P -step system from Def. (1.2.3) is strictly dissipative on XP×UP with
respect to the supply rate s(x̃, ũ) = ˜̀(x̃, ũ)− ˜̀

Π and with a storage function
λ̃ which is bounded on XP , then system (1.5) is uniformly suboptimally
operated off the periodic orbit Π∗.

�

Proof. The proof is due to Lem. 2.2.3 equivalent to the case in which steady
state operation is optimal and can be found in [19].

Remark 2.2.6 (Necessary conditions). Under additional controllability assump-
tions, (strict) dissipativity is also a necessary condition for optimal operation at
Π∗ (suboptimal operation off Π∗) [19]. �
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2.3 Strong duality, uniqueness and (strict) dissipativity

2.3 Strong duality, uniqueness and (strict) dissipativity

Consider systems of the type

x(k + 1) = A(k)x(k) +B(k)u(k) + w∗(k) (2.6)

Axx(k) ≤ bx, (=̂x(k) ∈ X) ∀k ∈ I≥0 (2.7)

Auu(k) ≤ bu, (=̂u(k) ∈ U) ∀k ∈ I≥0 (2.8)

with time-varying, P -periodic matrices A(k) = A(k + P ), A(k) ∈ Rn×n,
B(k) = B(k + P ),B(k) ∈ Rn×m and nominal periodic disturbances w∗(k) =
w∗(k+ P ), w∗(k) ∈ Rn without stochasticity, with k ∈ I≥0 and P ∈ I≥1. The
state (2.7) and input constraints (2.8) are assumed to be a convex polytope
[5]. Note, that the state and input constraints could also be assumed to
be P -periodic, time varying, which leads to more involved controllability
assumptions and will therefore be neglected here for simplicity. We assume
that there exists a X0 ⊆ X such that U(x)∞ 6= ∅ for all x ∈ X0. This is a
necessary condition for existence of a feasible periodic orbit Π. System (2.6)
is equipped with a continuous convex [5] stage cost function

` : X× U→ R. (2.9)

Since X and U are compact and ` is continuous, (2.9) is bounded from below
and from above. Without loss of generality we assume in addition that
0 ≤ infx∈X,u∈U `(x, u). The stage cost function for the corresponding P -step
system (1.10) is also convex, because the sum of convex functions is a convex
function [5]. Importantly, note that the P -step system stage cost will not be
necessarily strictly convex, even if the system stage cost is strictly convex. We
extend the known result, that linear systems with convex stage cost functions
are optimally operated at steady state, to the case of periodic operation.

Theorem 2.3.1. System (2.6) with convex stage cost (2.9) is optimally operated
at a P -periodic orbit. �

Proof. Consider the P -step system according to system (2.6). The P -step
system stage cost function is convex. The dynamics of the P -step system is
time invariant, because the dynamics of system (2.6) is P -periodic. Any P -
periodic orbit of system (2.6) is a steady state of the P -step system. Therefore
by [2, Thm. 4] the P -step system is optimally operated at steady state. By Lem.
2.2.3 it follows that system (2.6) is optimally operated at a corresponding
P -periodic orbit.
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2 Optimal periodic operation

Remark 2.3.2. The result given above is particularly useful in the sense, that it
is sufficient to solve (2.1) for period length P only. By Thm. 2.3.1 the solution
must be the (possible non-unique) best operating behavior of system (2.6). �

The fact that the P -step system stage cost function is not necessarily strictly
convex is unfortunate, because in case of strictly convex stage cost functionals
we can not conclude suboptimal operation off periodic operation, analogue to
the case of steady-state operation as e.g. in [2] or [8]. In the remainder of this
chapter we aim at building a framework for checking suboptimal operation
off a given periodic orbit via strict dissipativity. Given a P periodic orbit Π,
consider

(Porbit)

minx̃∈XP ,ũ∈UP
˜̀(x̃, ũ)− ˜̀

Π

s.t. x̃ = fP (x̃, ũ,w̃∗)

with fP the P -step system dynamics of (2.6), ˜̀
Π the cost along Π, and

w̃∗ = (w∗0 ,..,w
∗
P−1) = (w∗(0),..,w∗(P − 1)). The optimal solution is denoted

by x̃∗, ũ∗. The corresponding Lagrangian reads

L(x̃, ũ, ν̃) = ν̃T (x̃− fP (x̃, ũ, w̃∗)) + ˜̀(x̃, ũ)− ˜̀
Π (2.10)

with Lagrange multipliers ν̃ ∈ RnP and Lagrange multipliers ν̃∗ ∈ RnP at the
saddle point, see e.g. [5] for a definition.

Theorem 2.3.3 (Strong duality and dissipativity). The following statements
are equivalent:

(1) The LTV system (2.6) with stage cost (2.9) is dissipative with respect to a
periodic orbit Π∗ and a linear storage function λ̃>x̃ according to (2.3).

(2) 0 ≤ L(x̃∗, ũ∗, ν̃∗)

≤ min
x̃∈XP ,ũ∈UP

(
max
ν̃

L(x̃, ũ, ν̃)
)

≤ max
ν̃

(
min

x̃∈XP ,ũ∈UP
L(x̃, ũ, ν̃)

)
.

�

Proof. (1) ⇒ (2): Let x̃∗,ũ∗ describe a state and input trajectory of system
(2.6) according to Π∗. We have for all ν̃ ∈ RnP that L(x̃∗, ũ∗, ν̃) = 0 by
stationarity w.r.t. the P -step system. By inserting λ̃ from (1) we have 0 ≤
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2.3 Strong duality, uniqueness and (strict) dissipativity

L(x̃, ũ, λ̃) for all x̃ ∈ XP , ũ ∈ UP by the dissipativity equation and conclude
that minimizing L(x̃, ũ, λ̃) w.r.t. feasible x̃, ũ yields exactly 0. By choosing
ν̃∗ = λ̃ we have shown that 0 ≤ L(x̃∗,ũ∗, ν̃∗) holds1. Further, since the weak
slater condition [5, chapter 5.2] (affine constraints, convex cost) holds, we
have strong duality and therefore it follows that the dual problem has the
same solution as the primal problem [5] and consequently both optimization
problems in (2) have equal solutions.

(2)⇒ (1): Because of strong duality there exists a constant maximizer ν̃∗

such that

0 ≤ min
x̃∈XP ,ũ∈UP

L(x̃, ũ, ν̃∗)

⇒ 0 ≤ L(x̃, ũ, ν̃∗), ∀x̃ ∈ XP , ũ ∈ UP .

Let λ̃ = ν̃ which fulfill (1) and therefore the proof is complete.

Remark 2.3.4. Thm. 2.3.3 recovers the same result as [2, Thm. 4], namely that
any linear system with respect to convex cost functionals is optimally operated at
steady state as described also in Thm. 2.3.1. �

Theorem 2.3.5 (Strict dissipativity based on uniqueness). Let system (2.6) be
dissipative with respect to the supply rate ˜̀(x̃,ũ)− ˜̀

Π∗ according to stage cost
(2.9) and the P -periodic orbit Π∗. Then the following statements are equivalent.

(1) System (2.6) with stage cost (2.9) is strictly dissipative with respect to Π∗.

(2) All minimizers of (Porbit) are elements of Π̃∗. �

Proof. (1)⇒ (2): We show the implication by contradiction, i.e. let (1) hold
and Π̃∗ contains not all elements of the set of minimizers of (Porbit). We
conclude that there must exists a (x̄, ū) /∈ Π̃∗ that also minimizes (Porbit).
From the equality (stationarity) constraint in (Porbit) it follows that that x̄ =
fP (x̄, ū, 0) holds. Inserting (x̄, ū, 0) in the general strict dissipativity condition
(2.5) yields

0 ≤ −α`(|(x̄, ū)|Π∗).

1We will need the inequality later for the case of piece-wise defined cost functions (instead of just
equality to zero). In this case we analyze dissipativity only on a subset and therefore it could
happen that the optimal orbit is not included on that subset.
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2 Optimal periodic operation

The statement above is false, because if (x̄, ū) /∈ Π̃∗ then the distance |(x̄, ū)|Π∗
must be greater than zero and together with α ∈ K∞, the dissipativity inequal-
ity does not hold, which is the desired contradiction.

(2)⇒ (1): Let x̃∗, ũ∗ ∈ Π̃∗. (Porbit) attains zero for x̃∗, ũ∗, because x̃∗, ũ∗

corresponds to Π∗. We have by Thm. 2.3.3 that there exists a ν̃∗ ∈ RnP for
dissipativity such that

0 ≤ L(x̃, ũ, ν̃∗) for all x̃ ∈ XP , ũ ∈ UP .

By statement (2) and strong duality (weak slater condition) it follows for all
(x̃, ũ) ∈ XP × UP and (x̃, ũ) /∈ Π̃∗ (not a minimizer of (Porbit))

0 < L(x̃, ũ, ν̃∗).

Therefore, L is positive definite in x̃, ũ with respect to Π̃∗. Define as in [13, p.
341] the non-decreasing function

α̂(r) := min
x̃,ũ∈XP×UP :|x̃,ũ|Π∗=r

L(x̃, ũ, ν̃∗)

which is continuous at r = 0 and has the properties α̂(0) = 0, α̂(r) > 0 for
r > 0, and

α̂(|x̃, ũ|Π∗) ≤ L(x̃, ũ, ν̃∗) for all x̃ ∈ XP , ũ ∈ UP .

Analogously to [13, p.341] these properties imply that there exists a function
α1 ∈ K with the same properties as α̂ which is strictly increasing. Consider
the (n + m)P dimensional Ball BXP×UP with a chebyshev center [10] and
chebyshev radius rXP×UP such that XP × UP ⊂ BXP×UP . Define

α(r) =

{
α1(r), r ≤ 2rXP×UP

r − 2rXP×UP + α1(2rXP×UP ), r > 2rXP×UP

which is strictly increasing, limr→∞ α(r) = ∞, continuous and therefore
element of K∞. Further by the definition of α1 it holds

α(|x̃, ũ|Π∗) ≤ L(x̃, ũ, ν̃∗) for all x̃ ∈ XP , ũ ∈ UP

which equals the strict dissipativity inequality equation with respect to Π∗ and
storage function ν̃∗>x̃. We have shown the equivalence of the two statements
in Thm. 2.3.5, hence the proof is complete.
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2.3 Strong duality, uniqueness and (strict) dissipativity

Piecewise defined cost functionals and (strict) dissipativity

Checking dissipativity can be done by a ’divide and conquer’ strategy in case
of piece-wise defined convex cost functionals. This enables us to keep the
size of the resulting optimization problems small while having a linearly
increasing number of such optimization problems for each region. Thm. 2.3.3
for verifying dissipativity can also be applied in case of a convex piecewise
defined, continuous stage cost Rn → R, defined as

`(x,u) =


`1(x,u), ∀x, u ∈ L1,

`2(x,u), ∀x, u ∈ L2,
...
`nL(x, u), ∀x, u ∈ LnL

(2.11)

with disjoint sets L1, L2, ..., LnL ⊂ L,
⋃nL
i=1 Li = L ⊇ X× U, i.e. Li ∩ Lj =

∅ ∀i 6= j, i,j ∈ I[1,nL]. The corresponding stage cost of the P -step system
(1.10) is then defined with nL̃ = nPL different convex functions2. For easier
reference of the individual cases of ˜̀we introduce the notation

˜̀(x̃, ũ) =


˜̀
1(x̃,ũ), ∀x̃, ũ ∈ L̃1,

˜̀
2(x̃, ũ), ∀x̃, ũ ∈ L̃2,

...
˜̀
n
L̃

(x̃, ũ), ∀x̃, ũ ∈ L̃n
L̃

(2.12)

where L̃1, L̃2, ..., L̃n
L̃
⊂ L̃,

⋃n
L̃
i=1 L̃i = L̃ ⊇ XP × UP and L̃i ∩ L̃j = ∅ ∀i 6=

j, i,j ∈ I[1,n
L̃

] on which the P -step system stage cost function (2.12) is
defined. In the next section, we give an explicit representation of L̃i in case of
a piecewise linear stage cost function. Note that if (2.11) is convex, (2.12) will
also be convex, because the sum of convex functions is a convex function [5].

Corollary 2.3.6 (Piecewise treatment for dissipativity). The following state-
ments are equivalent:

(1) System (2.6) with stage cost (2.11) is dissipative with respect to the supply
rate ˜̀(x̃,ũ)− ˜̀

Π according to Π and storage function λ̃>x̃ on L̃.

2 For every state-input pair (x̃, ũ) of the P -step system we have a sum over P stage costs, see
(1.10). Consequently, for each term of the sum there are nL cases and because of P terms we
have nP

L cases in total.
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2 Optimal periodic operation

(2) System (2.6) with stage cost (2.11) is dissipative with respect to the supply
rate ˜̀(x̃,ũ)− ˜̀

Π according to Π and storage function λ̃>i x̃ on each L̃i, for
all i ∈ I[1,n

L̃
].

�

Proof. (1)⇒ (2): Choose λ̃i := λ̃ from (1).
(2)⇒ (1): For a contradiction we investigate (2) ∧ ¬ (1). By Thm. 2.3.3

we know that if ¬ (1) then there must exist constant x̃ ∈ X, ũ ∈ U such that
0 > maxν̃ L(x̃, ũ, ν̃). Choosing ν̃∗ = λ̃i with λi corresponding to the region
(x̃, ũ) ∈ L̃i yields 0 ≤ L(x̃, ũ, ν̃∗). Thus we have the desired contradiction.

Corollary 2.3.7 (Piecewise treatment for strict dissipativity). Cor. 2.3.6 holds
in case of investigating strict dissipativity with respect to the supply rate ˜̀(x̃,ũ)−
˜̀
Π according to the stage cost (2.11) and Π as well. �

Proof. The first part of the proof can be exactly constructed as the proof of
Cor. 2.3.6 by additionally considering the existence of a function α ∈ K∞.
For the second part note, that if each region is strictly dissipative, by Thm.
2.3.5 the solution of (Porbit) for each region must lie in Π̃. This implies that
the minimizers of (Porbit) lie in Π̃ and therefore, again by Thm. 2.3.5, we have
strict dissipativity on L̃.

2.4 Linear cost functionals and (strict) dissipativity

Let system (2.6) be equipped with a linear stage cost functional ` : X×U→ R
defined as

`(x,u) = `>x x+ `>u u (2.13)

with `x ∈ Rn and `u ∈ Rm. Note, that since X and U are compact and ` is
continuous, (2.13) is bounded from below and from above3. The stage cost
function (1.10) for the corrsponding P -step system reads

˜̀(x̃, ũ) :=

P−1∑
j=0

(`>x xu(j, xP−1) + `>u uj). (2.14)

3Without loss of generality we could assume in addition that 0 ≤ infx∈X,u∈U l(x, u).
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2.4 Linear cost functionals and (strict) dissipativity

An explicit dissipativity inequality

In order to obtain a compact explicit representation of the dissipativity in-
equality (2.3) in case of system (2.6) with stage cost (2.13) we establish the
following auxiliary result for general systems (1.5) with general stage cost
(1.6).

Lemma 2.4.1 (P -step system (strict) dissipativity on dynamics manifold).
Consider the manifold

M := {(x̃,ũ) ∈ XP × UP |xk+1 = f(xk,uk,0), k ∈ I[0,P−2]}. (2.15)

System (2.6) is (strictly) dissipative with respect to the supply rate ˜̀(x̃,ũ)− ˜̀
Π

onM. ⇔ Cor. 2.2.5 holds. �

Proof. ’⇐’: (Strict) dissipativity of the P -step system for all (x̃, ũ) ∈ XP ×UP
implies that (strict) dissipativity also holds on the strict subsetM⊂ XP ×UP .

’⇒’: Note that the state space of the P -step system in Def. 1.2.3 is in-
trinsically restricted to the manifold M. I.e. let (x̃∗, ũ∗) ∈ XP × UP , as-
sume ∃j ∈ I[0,P−2] such that for the j-th element of (x̃∗, ũ∗) it holds that
xj+1 6= f(xj ,uj+1,0). This yields to a contradiction to the definition of the
P -step system (1.8). We conclude that all implications of [19, Lem. 13] still
hold, because the poof is based on a limit inspection of the P -step system
in which it is intrinsically ensured that we stay on M as shown above. In
particular Cor. 2.2.5 in [19] still holds if we restrict the (strict) dissipativity
condition toM.

Remark 2.4.2. Lem. 2.4.1 loosens the original (strict) dissipativity conditions
given e.g. in [18], [19], because we have to verify (2.3), (2.5) only onM which
is a strict subset of XP × UP . In the following, especially in Ch. 3 and Ch. 4 we
use the strict dissipativity property only in cases in which the P -step system state
is intrinsically restricted to be element of (2.15). �

For an explicit representation of (2.3), we build a P -step system state x̃
using the system dynamics (2.6) and the predecessor inputs ũ− in order to
restrict the dissipativity inequality to (2.15)4, compare also with Fig. 2.1. The

4 The benefit is significant smaller number of variables in the the resulting linear programming
problem for verifying dissipativity.
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Figure 2.1: Expressing the (strict) dissipativity equation (2.5) on the the
manifold (2.15). All the relevant parts of the P -step system stage cost function
are red.

states can be written as

x̃ =


x0

A(0)x0 +B(0)u−1 + w∗1
A(1)A(0)x0 +A(1)B(0)u−1 +A(1)w∗1 +B(1)u−2 + w∗2

...
. . .

 (2.16)

in terms of inputs and disturbances. From (2.16) we infer a general formula
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2.4 Linear cost functionals and (strict) dissipativity

for the j-th state of a P -step system state, with j ∈ I[1,P−1]:

xj =

[
j−1∏
i2=0

A(j − 1− i2)

]
︸ ︷︷ ︸

=:A0
j−1

x0

+

j−2∑
i=0


(
j−i−2∏
i2=0

A(j − 1− i2)

)
︸ ︷︷ ︸

=:Ai+1
j−1

[
B(i)u−i+1 + w∗i+1

]


+B(j − 1)u−j + w∗j

and more compactly as

xj = A0
j−1x0 +

j−2∑
i=0

[Ai+1
j−1

(
Biu

−
i+1 + w∗i+1

)
] +Bj−1u

−
j + w∗j . (2.17)

In (2.17) we introduced the operator AN2
N1

: R2 → Rn×n defined as AN2
N1

=∏N1−N2
i2=0 A(N1 − i2) and Bi = B(i). By rewriting (2.17) in vector form with

In the identity matrix and On the zero matrix of dimension n× n as

x̃ =
In
A0

0

A0
1

...
A0
P−2


︸ ︷︷ ︸

=:Ω

x0 +


On
In
A1

1

...
A1
P−2

 (B0u
−
1 + w∗1) + ..+


On
On
On
...
In

 (BP−2u
−
P−1 + w∗P−1)
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we define the compact expression:

x̃ =Ωx0

+



On On On . . . On
In On On . . . On
A1

1 In On . . . On
A1

2 A2
2 In . . . On

...
A1
P−3 A2

P−3 A3
P−3 . . . In


︸ ︷︷ ︸

=:Γ


(B0u

−
1 + w∗1)

(B1u
−
2 + w∗2)

(B2u
−
3 + w∗3)
...

(BP−2u
−
P−1 + w∗P−1)



=Ωx0 + Γ



B0 On On . . .
On B1 On . . .
On On B2 . . .
On On On . . .

...
. . .

On On . . . BP−2


︸ ︷︷ ︸

=:B


u−1
u−2
u−3
...

u−P−1


︸ ︷︷ ︸

=:U−

+Γ


w∗1
w∗2
w∗3
...

w∗P−1


︸ ︷︷ ︸

=:W

=Ωx0 + ΓBU− + ΓW. (2.18)

As required, (2.18) expresses one P -step system state on the manifold M.
In order to construct an explicit representation corresponding to (2.3) we
analogously derive an explicit representation of x̃+. While the first element of
x̃ is assumed to be given as mentioned above, the first element of x̃+ reads

x+
0 = A(P − 1)xP−1 +B(P − 1)u0 + w∗0 , (2.19)

as illustrated in Fig. 2.1. All the variables for an explicit representation of
(2.3) onM can be summarized in the vector

Y := [x>0 ,U
−>,u>0 ,U

>]>.

We write (2.18) as

x̃ = [Ω,ΓB,0,0]︸ ︷︷ ︸
=:G

Y + ΓW = GY + ΓW. (2.20)

For a similar representation of x̃+ using Y , the first element of x̃+ (compare
with (2.19)) is given by

x+
0 = A(P − 1)[GY + ΓW ]P−1 +B(P − 1)u0 + w∗0
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2.4 Linear cost functionals and (strict) dissipativity

where [x̃]P−1 are the last n rows of x̃. Now it is straightforward to state
analogue to (2.20)

x̃+ =Ωx+
0 + ΓBU + ΓW

=ΩA(P − 1)[GY ]P−1 + ΩB(P − 1)u0 + ΓBU
+ ΩA(P − 1)[ΓW ]P−1 + Ωw∗0 + ΓW

= (ΩA(P − 1)[G]P−1 + [0,0,ΩB(P − 1),ΓB])︸ ︷︷ ︸
=:G+

Y

+ ΩA(P − 1)[ΓW ]P−1 + Ωw∗0 + ΓW

=G+Y + ΩA(P − 1)[ΓW ]P−1 + Ωw∗0 + ΓW.

For the constraints and stage cost in (2.3) we also need the inputs that read

U− =
[
Om(P−1)×n Im(P−1) Om(P−1)×m Om(P−1)

]︸ ︷︷ ︸
E−

Y

= E−Y

with On×m an n by m zeros matrix and

ũ =

[
Om×n Om×m(P−1) Im Om×m(P−1)

Om(P−1)×n Om(P−1) Om(P−1)×m Im(P−1)

]
︸ ︷︷ ︸

E

Y

= EY (2.21)

respectively. Given the equations above, the dissipativity inequality can be
explicitly stated as

0 ≤ qλ̃0 (Y ) (2.22)

with

qλ̃0 (Y ) :=λ̃(GY + ΓW )− λ̃(G+Y + ΩA(P − 1)[ΓW ]P−1

+ Ωw∗0 + ΓW ) + ˜̀>
xGx̃˜̀x

Y + ˜̀>
uEY − ˜̀

Π

and5 Gx̃˜̀x
:=
[
[G]>P−1, [G

+]>0:P−2

]>
. In order to define the constraint set

XP × UP (2.7), (2.8) in terms of Y , on which (2.22) must hold, we write the
5The expression [x̃+]0:P−2 represents the first (P − 1)n rows of x̃+.
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2 Optimal periodic operation

constraints of x̃ as

(IP ⊗Ax)x̃ ≤ 1P ⊗ bx ⇔ (IP ⊗Ax)G︸ ︷︷ ︸
=:Ax̃

Y ≤ 1P ⊗ bx − (IP ⊗Ax)ΓW︸ ︷︷ ︸
=:bx̃

⇔ Ax̃Y ≤ bx̃

with 1n a column vector with n elements equal to one. For x̃+ we define

Ax̃+ := (IP ⊗Ax)G+,

bx̃+ := 1P ⊗ bx − (IP ⊗Ax)(ΩA(P − 1)[ΓW ]P−1 + Ωw∗0 + ΓW )

and end up with

Ax̃+Y ≤ bx̃+ .

Analogously for the inputs we have for U−

(IP−1 ⊗Au)U− ≤ 1P−1 ⊗ bu ⇔ (IP−1 ⊗Au)E−︸ ︷︷ ︸
=:Aũ

Y ≤ 1P−1 ⊗ bu︸ ︷︷ ︸
=:bũ

⇔ AũY ≤ bũ

and for ũ

(IP ⊗Au)E︸ ︷︷ ︸
=:A

ũ+

Y ≤ 1P ⊗ bu︸ ︷︷ ︸
=:b

ũ+

⇔Aũ+Y ≤ bũ+ .

Altogether we get the following constraints
Ax̃
Ax̃+

Aũ
Aũ+


︸ ︷︷ ︸
AY

Y ≤


bx̃
bx̃+

bũ
bũ+


︸ ︷︷ ︸
bY

⇔ AY Y ≤ bY . (2.23)

For easier reference we define

Y := {Y |AY Y ≤ bY }. (2.24)
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2.4 Linear cost functionals and (strict) dissipativity

In summary, verifying (2.3) for system (2.6) with stage cost (2.13) is equal to
verifying

qλ̃0 (Y ) ≥ 0 for all Y ∈ Y (2.25)

for a given storage function λ̃.

A linear programming formulation for (strict) dissipativity

Based on the results of Sec. 2.3 we establish the link between dissipativity
and a certain linear programming (LP) problem for the system setup in this
Section. Consider

(Porbit, lin) =


minY

(
˜̀>
xGx̃˜̀x

+ ˜̀>
uE
)
Y

s.t. (G−G+)Y = ΩA(P − 1)[ΓW ]P−1 + Ωw∗0

AY Y ≤ bY

with AY and bY from (2.23).

Proposition 2.4.3 (Linear program and dissipativity). From Thm. 2.3.3 it
directly follows that we can verify dissipativity of system (2.6) with respect to the
supply rate ˜̀(x̃,ũ)− ˜̀

Π∗ according to the stage cost (2.13) and a periodic orbit
Π∗ by solving (Porbit, lin) and check if the solution is greater or equal to ˜̀

Π (⇒
dissipative) or not (⇒ not dissipative). �

Consider the general linear programming problem

min
Y

p>Y (2.26)

s.t. AY = b

CY ≥ d

and its dual problem

max
v

b>u+ d>v (2.27)

s.t. A>u+ C>v = p

v ≥ 0.

Further let v∗ ∈ RnP be a solution of (2.27) and define

K := {i|v∗i > 0}
L := {i|CiY = di, v

∗
i = 0}

where v∗i represents the i-th row of v∗.
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2 Optimal periodic operation

Corollary 2.4.4. (Condition for strict dissipativity) Consider

p> :=
(

˜̀>
xGx̃˜̀x

+ ˜̀>
uE
)
,

A := (G−G+), b := ΩA(P − 1)[ΓW ]P−1 + Ωw∗0 , C := −AY , and d := −bY .
If and only if the rows of [A> C>K C>L ] are linearly independent, and the linear
program

max
Y

1>CLY (2.28)

s.t. AY = 0

CKY = 0

CLY ≥ 0

has a zero maximum, then system (2.6) with stage cost (2.13) is strictly dissi-
pative with respect to the supply rate ˜̀(x̃,ũ)− ˜̀

Π obtained by solving (Porbit,lin).
�

Proof. System (2.6) with stage cost (2.13) is dissipative by Thm. 2.3.1. Due
to the P -periodic time varying system dynamics (2.6) and the explicit, time
invariant P -step system representation in (Porbit, Lin), a shifted optimal trajec-
tory will not be the minimizer of (Porbit, Lin). Therefore, if the minimizer of
(Porbit, Lin) is element of Π̃∗, it remains by Thm. 2.3.5 to verify, if it is the unique
solution to (Porbit, Lin). From [15, Theorem 2, (v) and Remark 2] we know, that
if and only if (2.28) has a zero maximum, the linear program (Porbit, lin) has a
unique solution which completes the proof.

Piecewise linear cost and (strict) dissipativity using LP

Using the results of Sec. 2.3 and Sec. 2.4 we state conditions for verifying
(strict) dissipativity in the setting considered in this chapter. Consider a convex,
piecewise defined, linear stage cost Rn → R, defined as

`(x,u) = max
i∈I[1,..,L]

(`>i,xx+ `>i,uu) (2.29)

see Fig. 2.2. Convexity of (2.29) can be verified [5] by rewriting (2.29) as

`(x,u) = min t (2.30)

s.t. `>i,xx+ `>i,uu ≤ t, ∀ i ∈ I[1,..,nL]. (2.31)
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2.4 Linear cost functionals and (strict) dissipativity

`>1,xx + `>1,uu

`>2,xx + `>2,uu

`>3,xx + `>3,uu

L1 L2 L3

`(x, u) = maxi2I[1,3]
`>i,xx + `>i,uu

Figure 2.2: Shown is the concept of a piecewise linear defined stage cost
as given in (2.29). Black lines are the single linear cost functions. The red
polyline indicate the resulting piecewise defined linear cost. The dotted blue
segments Li visualize the piecewise defined representation (2.32).

Another representation can be obtained [5] by explicitely stating the solution
of (2.29) as

`(x,u) =


`>1,xx+ `>1,uu, A1,`xx ≤ b1,`x ∧ A1,`uu ≤ b1,`u
`>2,xx+ `>2,uu, A2,`xx ≤ b2,`x ∧ A2,`uu ≤ b2,`u
...
`>nL,xx+ `>nL,uu, AnL,`xx ≤ bnL,`x ∧ AnL,`uu ≤ bnL,`u

(2.32)

with disjoint polytopic sets6 {(x,u) ∈ Rn × Rm|Ai,`xx ≤ bi,`x, Ai,`uu ≤
bi,`u,i ∈ I[1,nL]}, see Fig. 2.2. The last representation is also used in the
introductory example (1.19). It will play a central role for verification of
dissipativity in the case of piecewise defined linear cost. The corresponding

6The state space is a polytope.
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2 Optimal periodic operation

stage cost (1.10) of the P -step system reads

˜̀(x̃,ũ) = max
i∈I[1,..,n

L̃
]

P−1∑
j=0

(
˜̀>
i,x̃x̃ũ(j,xP−1) + ˜̀>

i,ũũ(j)
)

(2.33)

and is defined with nL̃ = nPL different linear functions7. Further (2.33) is also
convex like (2.29). For easier reference of the individual cases of (2.33) in the
sense of representation (2.32) we introduce the notation

L̃i : = {(Y ∈ Y|Ai, ˜̀̃xx̃(Y ) ≤ bi, ˜̀̃x, Ai,˜̀ũũ(Y ) ≤ bi,˜̀ũ}
= {(Y ∈ Y|AY,iY ≤ bY,i}, with i ∈ I[1,n

L̃
].

Using Cor. 2.3.6 we are able to formulate an explicit criterion for veryfying
dissipativity in case of a piecewise defined linear stage cost. For every case of
(2.33), i.e. i = 1,..,nL̃ define a local dissipativity equation as

∀Y ∈ L̃i : 0 ≤ q0,i(ν̃i, Y ) (2.34)

with

q0,i(ν̃i, Y ) =[ν̃>i (G−G+) + ˜̀>
i,xGx̃˜̀x

+ ˜̀>
i,uE]Y

+ ν̃>i (−ΩA(P − 1)[ΓW ]P−1 − Ωw∗0) + ˜̀>
i,xΓW − ˜̀

Π.

Corollary 2.4.5 (Dissipativity in case of convex piecewise defined linear cost).
System (2.6) is dissipative with respect to the supply rate ˜̀(x̃,ũ)− ˜̀

Π∗ according
to the stage cost (2.29) and the periodic orbit Π∗ obtained by minimizing

0 ≤ min
Y ∈L̃i

(˜̀>
i,xGx̃˜̀x

+ ˜̀>
i,uE)Y + ˜̀>

i,xΓW − ˜̀
Π (2.35)

subject to (G−G+)Y = ΩA(P − 1)[ΓW ]P−1 + Ωw∗0

if and only if (2.35) holds for every i ∈ I[1,n
L̃

]. �

Proof. The statement above follows from Cor. 2.3.6.

7 For every state-input pair (x̃, ũ) of the P -step system we have a sum over P stage costs (2.29),
see (1.10). Consequently, for each term of the sum there are L cases and because of P terms we
have LP cases in total.
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2.5 Example: Simple supply chain network

Corollary 2.4.6 (Strict dissipativity for convex piecewise defined linear cost).
Let pi := (˜̀>

i,xGx̃˜̀x
+ ˜̀>

i,uE), A := (G − G+), b := ΩA(P − 1)[ΓW ]P−1,
Ci := −AY,i, and di := −bY,i for every i ∈ I[1,n

L̃
]. System (2.6) is strictly

dissipative with respect to the supply rate ˜̀(x̃,ũ) − ˜̀
Π∗ according to the stage

cost (2.29) and the periodic orbit Π∗ obtained by minimizing (2.35) if and only
if the rows of [A> C>K,i C

>
L,i] are linearly independent for every i ∈ I[1,n

L̃
], and

max
Y

1>CL,iY (2.36)

s.t. AY = 0

CK,iY = 0

CL,iY ≥ 0

has a zero maximum for every i ∈ I[1,n
L̃

]. �

Proof. The statement above follows from Cor. 2.3.7.

2.5 Example: Simple supply chain network

We study (strict) dissipativity of the system described in 1.3 with respect
to the periodic orbit (1.20). In order to apply the criterion for verifying
(strict) dissipativity from Sec. 2.4 to system (1.13) with respect to the stage
cost (1.19) and optimal orbit candidate (1.20), we begin by fixing the trucks
trajectory to be 2-periodic with orbit (xT,P (2i),xT,P (2i+ 1)) = (0,1),i ∈ I≥0

and inspect the resulting linear periodic time varying system. In this special
case we get the following stage cost for the P -step system

˜̀(x̃, ũ) =

x1,S,1 + 0.5x1,S,2 + x1,T,L + u0,T,P + x1,R

+x+
0,S,1 + 0.5x+

0,S,2 + x+
0,T,L + u1,T,P + x+

0,R, x1,R ≥ 0,x+
0,R ≥ 0

x1,S,1 + 0.5x1,S,2 + x1,T,L + u0,T,P + x1,R

+x+
0,S,1 + 0.5x+

0,S,2 + x+
0,T,L + u1,T,P − 10x+

0,R, x1,R ≥ 0,x+
0,R < 0

x1,S,1 + 0.5x1,S,2 + x1,T,L + u0,T,P − 10x1,R

+x+
0,S,1 + 0.5x+

0,S,2 + x+
0,T,L + u1,T,P − 10x+

0,R, x1,R < 0,x+
0,R < 0.

(2.37)

Given the graph trajectory (0,1) for the truck position, the case x0,R < 0 and
x1,R ≥ 0 is not possible, because the truck can fill up the retailers storage
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2 Optimal periodic operation

only at the second time instance. By solving (Porbit,lin) we get the following
Lagrange multipliers (storage functions, optimal dual variables) for each case
of (2.37):

ṽ>1 = [5.7873, 5.1359, 3.8466,−0.41396,

0.097112,−5.1888,−5.7873,−0.41396], x1,R ≥ 0,x+
0,R ≥ 0

ṽ>2 = [7.4407,6.8182,7.4261,−3.1921,

0.13043,− 6.9947,− 7.4407,− 3.1921], x1,R ≥ 0,x+
0,R < 0

ṽ>3 = [5.7873,5.1359,3.8466,−0.41396,

0.097112,− 5.1888,− 5.7873,− 0.41396],x1,R < 0,x+
0,R < 0

with the corresponding optimal values

0, x1,R ≥ 0,x+
0,R ≥ 0

0, x1,R ≥ 0,x+
0,R < 0

9, x1,R < 0,x+
0,R < 0

which are all greater than zero from which dissipativity for the given trucks
position periodic orbit (0,1) follows by Cor. 2.4.5. Further, all values of the LP
in Cor. 2.4.6 equal zero, which implies strict dissipativity for the considered
truck periodic orbit. It remains to show that all truck position trajectories are
worse than the periodic trajectory (xT,P (2i),xT,P (2i+ 1)) = (0,1),i ∈ I≥0. If
this is the case, we conclude by suboptimal operation off the optimal orbit and
Rem. 2.2.6, strict dissipativity of (1.20) without the constraint that the truck
position must follow the periodic orbit (xT,P (2i),xT,P (2i+1)) = (0,1),i ∈ I≥0.
An exact proof for this fact turns out to be non-trivial and is not the main focus
of this work. Nevertheless we give the following justification.

• Given a sequence (...,xT,P (i),xT,P (i+ 1),xT,P (i+ 2),xT,P (i+ 3),...) =
(.., ∗ ,0,1,0,1 ∗ ,...) with ∗ ∈ {0,1}, the periodic orbit (1.20) is our best
possible operation guess for x(i),x(i+ 1) because it is always optimal to
have as little goods in the supply chain as possible such that the retailer
storage remains positive.

• There will always be just finite constant subsequences (xT,P (i),xT,P (i+
1),..) = (1,1,..) and (xT,P (i),xT,P (i+1),..) = (0,0,..), because otherwise
the retail store storage value will decrease by the nominal demand until
it is infeasible. This is because the retailer and truck storage is finite and
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2.5 Example: Simple supply chain network

therefore at some point the truck must travel between the supplier and
the retailer in order to preserve feasibility w.r.t. the state constraints.

• Consider that the truck remains at the supplier for τ + 1 time instances
with τ ∈ I≥0 and therefore leaves the periodic (0,1) orbit in case τ > 0.
For such a scenario, consider the truck’s position orbit given in Tab. 2.1.
The remaining states and inputs are chosen to minimize the overall
average cost until we reach the periodic orbit (0,1) again. The average
cost for the trajectory shown in Tab. 2.1 can be calculated using the
Gauss sum and equals

η1(τ) =
τ2 + 7τ + 28

2τ + 8
. (2.38)

For τ = 0, the truck remains for one time instance at the supplier, and
the corresponding average cost is η1(0) = 3.5 which equals the average
cost of (1.20). For all τ > 0 we have an average cost η1(τ) > 3.5.
Therefore, for the considered scenario it is suboptimal to leave the truck
position periodic orbit (0,1).

• Analogously, in Tab. 2.2 the truck remains for τ + 1 time instances at
the retailer. The average optimal cost w.r.t. τ reads

η2(τ) =
τ2 + 7τ + 14

2τ + 4
. (2.39)

Again, η2(0) = 3.5 which equals the optimal average cost of (1.20) and
for all τ > 0 we have η(τ) > 3.5. Consequently in this scenario it is
suboptimal to leave the truck position orbit (0,1) also.

The justification above is by no means a complete proof. As a consequence, we
have to rely on ’expert knowledge’. The following control methods however
rely on the strict dissipativity property. Therefore, if the closed loop shows a
different behavior than expected, we can fix the truck’s position to (0,1), for
which we have rigorously proven strict dissipativity.
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k = 1 k = 2 k = 3 .. k = τ + 3 k = τ + 4

xS,1(k) τ + 2 0 0 0 .. 0 2 0
xS,2(k) 0 0 0 0 .. 0 0 0
xT,P (k) 0 1 0 0 .. 0 0 1
xT,L(k) 0 τ + 2 0 0 ... 0 0 2
xR(k) 1 0 τ + 1 τ .. 2 1 0
uT,P (k) 1 1 0 0 .. 0 1 1
uT,L(k) τ + 2 −τ − 2 0 0 .. 0 0 0
uS(k) 0 0 0 0 .. 2 0 0

Table 2.1: Optimal state and input trajectory in case that the truck remains
at the supplier for τ + 1 time instances. The corresponding cost is given in
(2.38).

k = 1 k = 2 k = 3 .. k = τ + 2

xS,1(k) τ + 2 0 0 0 ... 0 0
xS,2(k) 0 0 0 0 ... 0 0
xT,P (k) 0 1 1 1 ... 1 1
xT,L(k) 0 τ + 2 0 0 ... 0 0
xR(k) 1 0 τ + 1 τ ... 2 2
uT,P (k) 1 0 (1) 0 0 ... 0 1
uT,L(k) τ + 2 −τ − 2 0 0 ... 0 0
uS(k) 0 0 0 0 ... 0 0

Table 2.2: Optimal state and input trajectory in case that the truck remains at
the retailer for τ time instances. If τ = 0 we must choose uT,P = 1 at k = 2
for optimality. The corresponding cost is given in (2.39).
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3 Economic MPC for optimal periodic
operation

3.1 Introduction

Economic model predictive control (EMPC) schemes have been studied exten-
sively in recent years. They differ from classical stabilizing model predictive
control schemes in terms of their general performance objective function which
does not need to be chosen such that the controller stabilizes the system state
with respect to an a-priori given reference point or trajectory. Such references
are typically selected through an auxiliary optimization or process expertise, in
order to achieve good overall closed loop system performance with respect to
a certain general (economic) performance objective. In contrast, as the name
suggests, the economic objective is directly used in economic model predictive
control schemes. Loosely speaking, given a small disturbance pushing the
system away from optimal operation, the advantage is that the system will be
economically controlled towards optimal operation compared to classical MPC
which would push the system to the reference most of the time regardless of
the true economic objective.

However, since the cost can be chosen arbitrarily, the closed loop system has
potentially chaotic behavior. In particular it will not necessarily converge to a
steady-state. In the literature, various EMPC schemes have been developed,
that ensure certain performance, e.g. [1,3]. In addition criterions are provided
which allow to determine whether or not for example steady-state operation is
optimal and if the closed loop system will converge to steady-state [19]. It is
not only interesting from a theoretical point of view to determine a-priori how
the closed loop will behave or how we have to design the EMPC scheme such
that for example steady-state operation is optimal. In practice, especially in
safety critical processes that are under strict observation, e.g. chaotic behavior
can hardly be monitored.

Despite optimal steady-state operation, in nature, economics, and engineer-
ing applications, periodic operation plays an essential role, e.g. in case of
evolutionary processes, sleeping rhythms, human walk, engines, parking a
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car sideways, or supply chain networks as considered in this work as applica-
tion. More general, in terms of controllability analysis of non-linear systems,
Lie-brackets play a central role. The basic idea is that certain non-linear sys-
tems can only be controlled by using some kind of periodic input pattern, see
e.g. [6].

Our contribution in this section is a novel economic model predictive control
scheme for optimal periodic operation, based on ideas from [1] for the steady-
state case. The algorithm we propose is shown to be recursively feasible and
has an average performance which is no worse than that of optimal periodic
operation. Further in case of strict dissipativity, our control scheme is proven
to asymptotically stabilize the optimal periodic orbit.

Related work

In [18] an EMPC scheme without terminal constraints is presented, which does
not require a terminal cost or a terminal constraint. Based on controllability
assumptions and strict dissipativity, they provide a bound on suboptimality
w.r.t. closed loop asymptotic average performance and practical convergence
guarantees to the optimal periodic orbit. The main advantage is the resulting,
simple online optimization problem. However, since the performance and con-
vergence bounds are related to the planning horizon, in some cases the latter
has to be chosen quite large in order to achieve nearly optimal performance.
We showed this effect using the simple supply chain example (Sec. 1.3) as
well as in the application section of this work using a complex supply chain
network.

There also exists a method, more closely related to our approach [24]. It
is based on a terminal region and terminal cost and thus generalizes [23].
Compared to their assumptions, we propose a control scheme that is also
applicable in case of non-controllability in a local region around the optimal
periodic orbit as long as the system is controllable over one period. As we will
see in the application section, it would not be possible to apply the method
presented in [24] to the example of supply chain networks considered in
this work. Furthermore, our assumptions on the terminal controller and
terminal cost can be treated similar to the case when steady-state operation is
optimal, as e.g. investigated in [1]. The strict dissipativity assumptions they
introduce are time-varying, P -periodic, which differs from common literature,
as e.g. [19] and are more involved, even in a linear setting. Further, they do
not provide closed loop performance guarantees.
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Table 3.1: Notation used in Chap. 3 with k ∈ I≥t, if not specified otherwise.
Symbol Definition
u u ∈ UN
u(k) See above: elements of u for k ∈ I[0,N−1]

u∗(t) u∗(t) ∈ UN ,
a solution of (PEMPC-P) with initial condition x(t)

u∗(k) See above: elements of u∗(t) for k ∈ I[t,t+N−1]

ū∗(k) Candidate input signal as defined in (3.3)
ūu∗(t)(k) ūu∗(t)(k) = (ū∗(k),...,ū∗(k +N − 1)),

a tuple of candidate inputs (3.4)
uMPC(t) Inputs applied to system (1.5) when using

an MPC algorithm starting with initial condition x(0)
ũ(k) ũ(k) = (u(k),..,u(k + P − 1)), k ∈ I[0,N−P ]

ũ∗(k) ũ∗(k) = (u∗(k),..,u∗(k + P − 1)),
k ∈ I[t,t+N−P ]

˜̄u∗(k) ˜̄u∗(k) = (ū∗(k),..,ū∗(k + P − 1)),
k ∈ I[t,t+N−P ]

x Initial condition for (PEMPC-P)
xu(k, x) Trajectory of system (1.5) at time k ∈ I[0,N ],

starting with initial condition x and applying u
xu∗(t)(k, x(t)) Trajectory of system (1.5) at time k ∈ I[t,t+N ],

starting with initial condition x(t) and applying u∗(t)
xMPC(t) Closed loop trajectory of system (1.5) under

application of an MPC algorithm, starting at x(0)
xcMPC,u∗(t)(k) Closed loop trajectory of system (1.5) under

candidate inputs ū∗(k) starting from xMPC(t)
x̃u(k,x) x̃u(k,x) = (xu(k − P + 1,x),.., xu(k,x)) and filled with

zero elements in case k − P + 1 < 0
x̃u∗(t)(k,x(t)) x̃u∗(t)(k,x(t)) =

(xu∗(t)(k − P + 1, x(t)),..,xu∗(t)(k,x(t))
and filled with zero elements in case k − P + 1 < t

x̃MPC(t) x̃MPC(t) = (xMPC(t− P + 1),..,xMPC(t)) and
filled with zero elements in case k − P + 1 < t

x̃cMPC,u∗(t)(k) x̃cMPC,u∗(t)(k) =
(xcMPC,u∗(t)(k − P + 1),..,xcMPC,u∗(t)(k)) and
filled with zero elements in case k − P + 1 < t
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3 Economic MPC for optimal periodic operation

3.2 Assumptions and algorithm

We consider systems as introduced in Sec. 1.2 without disturbances, i.e. w.l.o.g.
w(k) = 0 for all k ∈ I≥0. We use the notation (x̃)P−1 = xP−1.

Assumption 3.2.1 (Terminal controller, set and cost). Let (xpi ,u
p
i ) ∈ Π for

i ∈ I[0,P−1]. There exists a compact Xf ⊆ X such that for all i ∈ I[0,P−1]

the set of phase shifted orbits Π̃X of ΠX is contained in XPf . Further assume
that there exists a feedback law κ̃f : XP → UP and a continuous terminal cost
Vf : Xf → R such that ∀x̃ with xP−1 ∈ Xf :

1. κ̃f (x̃) ∈ UP . feasibility

2. fP (x̃,κ̃f (x̃),0) ∈ XPf . positive invariance of XPf

3.

Vf ((fP (x̃, κ̃f (x̃),0))P−1)− Vf ((x̃)P−1)

≤ −˜̀(x̃, κ̃f (x̃)) +

P−1∑
i=0

`(xpi , u
p
i ).

Without loss of generality let Vf (x) ≥ 0 ∀x ∈ Xf . �

Ass. 3.2.1 can be interpreted as the common terminal region stability
assumption in economic model predictive control [1] with respect to the P -
step system. Using this assumption we will show asymptotic stability of Π̃X
which corresponds to the classical steady state stability in terms of the P -step
system.

Remark 3.2.2 (Construction of terminal cost function). By defining the dy-
namics f̄(x,ũ) := f(f(..f(x,u0,0),..,uP−2,0),uP−1,0) and stage cost ¯̀(x,ũ) =
˜̀(x̃, ũ) with x̃ = (∗,∗ ,..,x), ∗ ∈ Rn (arbitrary), we can use the method described
in [1] in order to construct Vf . �
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3.2 Assumptions and algorithm

Let N = N1P with N1 ∈ I>0
1. Define the open loop optimization problem

(PEMPC-P)



minu∈UN JMPC(x,u)

s.t. for all k ∈ I[0,N−1] :

xu(k + 1,x) = f(xu(k,x),u(k),0)

xu(k,x) ∈ X
u(k) ∈ U
xu(N,x) ∈ Xf
xu(0,x) = x

with finite time open loop cost functional

JMPC(x,u) : =

N−1∑
k=0

`(xu(k,x),u(k)) + Vf (xu(N,x))

=

N/P−1∑
k=0

˜̀(x̃u(kP,x),ũ(kP )) + Vf (xu(N, x)) (3.1)

which will be solved for u = (u(0), u(1),..,u(N − 1)) at each time step tP ∈
I≥0 using the current system state x = x(tP ). Let the optimal input sequence
of (PEMPC-P) at time t be denoted by u∗(t) = (u∗(t),..,u∗(t+N − 1)) with cor-
responding optimal states xu∗(t)(k, x(t)) for k ∈ I[t,t+N ] and xu∗(t)(t, x(t)) =
x(t), see also Tab. 3.1. W.l.o.g. assume that the value of JMPC will be greater
or equal than zero. This is valid, since w.l.o.g. we can assume that ` and Vf
are always greater or equal than zero due to compactness of the respective
sets and continuity of the functions.

Assumption 3.2.3. The optimization problem (PEMPC-P) is feasible at time t = 0
for x = x(0). �

In Alg. 1 we propose the P -step economic model predictive control algo-
rithm for optimal periodic operation. If Alg. 1 is applied, starting with initial
state x(0), we denote the closed loop system states simply by xMPC(t) and
the applied inputs by uMPC(t), t ∈ I≥0 with corresponding definitions for the
P -step system representation, see Tab. 3.1.

1This means we only consider multiples of the period length P for the planning horizon.
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3 Economic MPC for optimal periodic operation

3.3 Recursive feasibility

Theorem 3.3.1 (Recursive feasibility of (PEMPC-P)). Let Ass. 3.2.1 and Ass.
3.2.3 hold. Then Alg. 1 is recursively feasible. �

Proof. We prove recursive feasibility as it is done typically [20] by breaking
down the P -step system control law κ̃f in terms of single time steps rather
than considering the P -step system steps. Note, that we can rewrite κ̃f (x̃)
from Ass. 3.2.1 as

κ̃f (x̃) = (κf,0(x̃), κf,1(x̃), ..., κf,P−1(x̃)) (3.2)

by the definition of the P -step system. By Ass. 3.2.3, Alg. 1 is feasible
at t = 0. Consider the candidate input solution starting at time t + τ for
τ ∈ I≥1,k ∈ I[t+τ,t+τ+N−1]

ū∗(k) :=

{
u∗(k), k ∈ I[t,t+N−1]

κ̃f,(k−t)modP
(
x̃cMPC,u∗(t)(P b k−tP c+ t)

)
, else

(3.3)

specified by using the notation (3.2). We denote the closed loop ’candidate’
states by xcMPC,u∗(t)(k) with xcMPC,u∗(t)(t) = xMPC(t) if we use u∗(t) to
construct the applied candidate inputs ū∗(k), k ∈ I≥t. The corresponding
notations for the P -step system representation is given in Tab. 3.1. We define

ūu∗(t)(k) = (ū∗(k), ū∗(k + 1), ..., ū∗(k +N − 1)) (3.4)

as the corresponding candidate input trajectory, which is a feasible periodic
completion of the nominal input trajectory u∗(t). Therefore the index (k − t)
mod P ’chooses’ the right successor input element of the nominal terminal
feedback law (3.2) for the system. The last state considered in the open loop
optimization is xu∗(t)(t + N). For k = t + N and e.g. τ = 1 we then have

Algorithm 1 Economic model predictive control for optimal periodic operation

1: procedure EMPC-P(initial state x(0))
2: for k = 0,1,... do
3: solve (PEMPC-P) with initial condition xMPC(kP )
4: apply the first P inputs of u∗(kP ) to the system (1.5)
5: end for
6: end procedure
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3.4 Asymptotic average performance

(N) mod P = 0, because N = N1P . The P -step feedback (3.2) is based on
the last P -step system state. I.e. P b k−t

P
c + t is constant within one period

and increments once a period is completed. Again for e.g. k = t + N we
get κf,0(x̃u∗(t)(t+N)). By the definition of the P -step system according to
system (1.5) and Ass. 3.2.1 it follows directly that (3.4) is a feasible input
trajectory for all τ ∈ I≥1 which completes the proof.

3.4 Asymptotic average performance

Theorem 3.4.1 (Asymptotic average performance). If Ass. 3.2.1 and Ass.
3.2.3 hold, then under application of Alg. 1 the closed loop system has an average
performance which is no worse than that of the optimal periodic orbit {P,Π},
i.e.

1

P

P−1∑
k=0

`(xpk, u
p
k) ≥ lim sup

T→∞

∑T−1
k=0 `(xMPC(k),uMPC(k))

T
(3.5)

with (xpi ,u
p
i ) ∈ Π for i ∈ I[0,P−1]. �

Proof. Consider JMPC(xcMPC,u∗(0)(t),ūu∗(0)(t)) which is the open loop finite
time cost at time t by using the candidate input defined in (3.4). We have

JMPC(xcMPC,u∗(0)(t),ūu∗(0)(t)) =

t+N−1∑
k=t+P

`(xcMPC,u∗(0)(k), ū∗(k))

+ ˜̀(x̃cMPC,u∗(0)(t),˜̄u
∗(t)))

+ Vf (xcMPC,u∗(0)(t+N))

which corresponds to the optimal open loop, finite time optimal cost due to
the definition of the candidate input and

JMPC(xcMPC,u∗(0)(t+ P ),ūu∗(0)(t+ P )) =

t+N−1∑
k=t+P

`(xcMPC,u∗(0)(k),ū∗(k))

+ ˜̀(xcMPC,u∗(0)(t+N),κ̃f (x̃cMPC,u∗(0)(t+N)))

+ Vf (xcMPC,u∗(0)(t+N + P )).
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3 Economic MPC for optimal periodic operation

In the following we use the short notations

J̃cMPC(t) := JMPC(xcMPC,u∗(0)(t),ūu∗(0)(t)) (3.6)

and

J̃cMPC(t+ P ) := JMPC(xcMPC,u∗(0)(t+ P ),ūu∗(0)(t+ P )). (3.7)

We have

J̃cMPC(t+ P )− J̃cMPC(t) =

− ˜̀(x̃cMPC,u∗(0)(t),˜̄u
∗(t)))

+ Vf (xcMPC,u∗(0)(t+N + P ))

− Vf (xcMPC,u∗(0)(t+N))

+ ˜̀(x̃cMPC,u∗(0)(t+N),κ̃f (x̃cMPC,u∗(0)(t+N)))

The last three summands are upper bounded via Ass. 3.2.1 and we get

J̃cMPC(t+ P )− J̃cMPC(t) ≤ −˜̀(x̃cMPC,u∗(0)(t),˜̄u
∗(t))) +

P−1∑
i=0

`(xpi ,u
p
i ).

(3.8)

From here we can proceed analogously to [1] by taking the average on both
sides of (3.8) in terms of the period length P and calculate

lim inf
T→∞

∑T
k=t

(
J̃cMPC(kP + P )− J̃cMPC(kP )

)
TP

≤

lim inf
T→∞

∑T
k=t

(
−˜̀(x̃cMPC,u∗(0)(kP ),˜̄u∗(kP ))) +

∑P−1
i=0 `int(zpi ,v

p
i )
)

TP
.

(3.9)

By having a closer look at the LHS of (3.9) we notice the telescoping series
and get

lim inf
T→∞

J̃cMPC(TP + P )− J̃cMPC(t)

TP
= lim inf

T→∞

 J̃cMPC(TP + P )

TP︸ ︷︷ ︸
≥0

+
J̃cMPC(t)

TP︸ ︷︷ ︸
→0


≥ 0.
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3.5 Asymptotic stability of the optimal periodic orbit

We conclude

(..)︸︷︷︸
≥0

+ lim sup
T→∞

∑T
k=t

(
˜̀(x̃cMPC,u∗(0)(kP ),˜̄u∗(kP )))

)
TP

≤ lim inf
T→∞

∑T
k=t

(∑P−1
i=0 `(xpi ,u

p
i )
)

TP

≤ 1

P

P−1∑
i=0

`(xpi ,u
p
i )

which is by the definition of the P -step system stage cost (1.10) equal to (3.5).
By suboptimality of the candidate solution we can always choose the optimal
open loop, finite time value function of (PEMPC-P) instead of Jaux(t+P ) in (3.8)
which therefore implies optimal operation using Alg. 1 and thus completes
the proof.

3.5 Asymptotic stability of the optimal periodic orbit

In this section we investigate stability by constructing a Lyapunov function.
We introduce a Lyapunov function which is different to the one from [1],
however the concept of rotated cost functionals is used.

Assumption 3.5.1. System (1.5) is strictly dissipative with respect to Π accord-
ing to Def. 2.2.4 with a continuous storage function λ̃. �

Assumption 3.5.2. For all x(0) ∈ ΠX the solution u∗ of (PEMPC-P) is element
of Π̃

N/P
U such that for the corresponding states it holds x̃u∗(k) ∈ Π̃X for all

k ∈ I[P−1,N ]. �

Remark 3.5.3. Ass. 3.5.2 e.g. fulfilled when using terminal equality constraints.
Otherwise we have to verify the condition in Ass. 3.5.2 for every element of2 ΠX.
In case that Ass. 3.5.2 is not valid, there exists a state x̄ ∈ ΠX such that if x̄ is
the initial condition we will not stay necessarily on Π under application of Alg. 1.
Without rigorous analysis we expect that in this case, the closed loop system will
switch the phase on which it follows the orbit ΠX. �

2Solve (PEMPC-P) for every element x(0) ∈ ΠX and verify if u∗ ∈ Π̃
N/P
U .

51



3 Economic MPC for optimal periodic operation

Rotated cost functionals

Let ˜̀
Π be the sum of stage costs along the periodic orbit Π. The rotated stage

cost is defined as

L̃(x̃,ũ) := ˜̀(x̃,ũ)− ˜̀
Π + λ̃(x̃)− λ̃(fP (x̃,ũ,0)), (3.10)

by the definition of the P -step system stage cost function (1.10). Let the
rotated P -step terminal cost {x̃ ∈ XP |xP−1 ∈ Xf} → R be

Ṽf (x̃) := Vf ((x̃)P−1) + λ̃(x̃),

and the auxiliary objective

Jaux(x(t),u) :=

N/P−1∑
k=0

L̃(x̃u(t+ kP ),ũ(t+ kP )) + Ṽf (x̃u(t+N)). (3.11)

Lemma 3.5.4. The rotated objective function yields the same minimizer as
JMPC, i.e.

argmin
u∈UN (x(t))

JMPC(x(t),u) = argmin
u∈UN (x(t))

Jaux(x(t),u).

�

Proof. We have

Jaux(x(t),u) =

N/P−1∑
k=0

(
˜̀(x̃u(t+ kP ),ũ(t+ kP ))− ˜̀

Π

)

+

N/P−1∑
k=0

λ̃(x̃u(t+ kP ))− λ̃(fP (x̃u(t+ kP ),ũ(t+ kP ),0))︸ ︷︷ ︸
telescopic w.r.t. k


+ Vf (xu(t+N)) + λ̃(x̃u(t+N))

=

N/P−1∑
k=0

˜̀(x̃u(t+ kP ),ũ(t+ kP )) + Vf (xu(t+N))︸ ︷︷ ︸
=JMPC(x(t),u)

−
N/P−1∑
k=0

˜̀
Π + λ̃(x̃u(t))︸ ︷︷ ︸

constant

.
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3.5 Asymptotic stability of the optimal periodic orbit

Consequently we have Jaux(x(t),u) = JMPC(x(t),u) + const., and therefore
Jaux and JMPC have the same minimizer.

Stability analysis

Consider the set

XN := {x ∈ X|∃u ∈ UN (x) s.t. xu(t+N,x) ∈ Xf} (3.12)

for which (PEMPC-P) is feasible and

X̃N := {x̃ ∈ XP |xP−1 ∈ XN}.

Let V : X̃N → R be defined as

V (x̃) = −
∞∑
k=0

[Jaux(xcMPC,u∗(0)(kP + P ),ūu∗(0)(kP + P ))

− Jaux(xcMPC,u∗(0)(kP ),ūu∗(0)(kP ))] (3.13)

with u∗(0) the solution to (PEMPC-P) for initial condition xP−1 and ū∗(.) the
corresponding candidate solution, see Tab. 3.1. The function V (x̃) is the
infinite sum over (finite time) open loop auxiliary cost differences along the
closed loop trajectory resulting from applying the candidate input sequence.
In the remainder of this chapter we prove that (3.13) is a Lyapunov function
for the P -step system which will finally be used for the stability theorem.

Lemma 3.5.5. For all x̃ ∈ {x̃ ∈ XP |xP−1 ∈ Xf} it holds

Ṽf (fP (x̃, κ̃f (x̃),0))− Ṽf (x̃) ≤ −L̃(x̃, κ̃f (x̃)). (3.14)

�

Proof. By Ass. 3.2.1 for x̃ ∈ {x̃ ∈ XP |xP−1 ∈ Xf} it holds

Vf ((fP (x̃, κ̃f (x̃),0))P−1)− Vf ((x̃)P−1) ≤ −˜̀(x̃, κ̃f (x̃)) + ˜̀
Π.

Adding −λ̃(x̃) + λ̃(fP (x̃, κ̃f (x̃),0)) on both sides yields

Vf ((fP (x̃, κ̃f (x̃),0))P−1)− Vf ((x̃)P−1)− λ̃(x̃) + λ̃(fP (x̃, κ̃f (x̃),0))

≤ −L̃(x̃,κ̃f (x̃))

whereas the LHS equals Ṽf (fP (x̃, κ̃f (x̃),0))− Ṽf (x̃) and thus we have shown
(3.14).
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3 Economic MPC for optimal periodic operation

Lemma 3.5.6. For all x(0) ∈ XN it holds for all k ∈ I≥0

Jaux(xcMPC,u∗(0)(kP + P ), ūu∗(0)(kP + P ))

− Jaux(xcMPC,u∗(0)(kP ), ūu∗(0)(kP + P ))

≤ −α
(
|(x̃cMPC,u∗(0)(kP ), ˜̄u∗(kP ))|Π

)
.

�

Proof. Consider for all k ∈ I≥0

(3.15)

Jaux(xcMPC,u∗(0)(kP ), ūu∗(0)(kP )) =

N/P−1∑
i=k

L̃(x̃cMPC,u∗(0)(iP ),˜̄u∗(iP ))

+ Ṽf (x̃cMPC,u∗(0)(kP +N)) (3.16)

which is the rotated cost function with a candidate input sequence and

Jaux(xcMPC,u∗(0)(kP + P ), ūu∗(0)(kP + P )) =

N/P−1∑
i=k+1

L̃(x̃cMPC,u∗(0)(iP ),˜̄u∗(iP ))

+ L̃(x̃cMPC,u∗(0)(kP +N), κ̃f (x̃cMPC,u∗(0)(kP +N))

+ Ṽf (x̃cMPC,u∗(0)(kP +N + P )) (3.17)

is the rotated cost of the (suboptimal) successor step using the candidate input
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3.5 Asymptotic stability of the optimal periodic orbit

trajectory (3.4). Using (3.16) and (3.17) we get

Jaux(xcMPC,u∗(0)(kP + P ), ūu∗(0)(kP + P ))

− Jaux(xcMPC,u∗(0)(kP ), ūu∗(0)(kP ))

= −L̃(x̃cMPC,u∗(0)(kP ),˜̄u∗(kP ))

+ L̃(x̃cMPC,u∗(0)(kP +N), κ̃f (x̃cMPC,u∗(0)(kP +N))

− Ṽf (x̃cMPC,u∗(0)(kP +N))

+ Ṽf (x̃cMPC,u∗(0)(kP +N + P ))

≤︸︷︷︸
Lem. 3.5.5

−L̃(x̃cMPC,u∗(0)(kP ),˜̄u∗(kP ))

≤︸︷︷︸
Ass. 3.5.1

−α
(
|(x̃cMPC,u∗(0)(kP ), ˜̄u∗(kP ))|Π

)
.

Lemma 3.5.7. The sequence Jaux(xcMPC,u∗(0)(kP ), ūu∗(0)(kP )) converges for
k ∈ I≥0, k →∞. �

Proof. By Lem. 3.5.6 we have

Jaux(xcMPC,u∗(0)(kP + P ), ūu∗(0)(kP + P ))

− Jaux(xcMPC,u∗(0)(kP ), ūu∗(0)(kP + P ))

≤ −α
(
|(x̃cMPC,u∗(0)(kP ), ˜̄u∗(kP ))|Π

)
≤ 0.

Therefore the sequence Jaux(xcMPC,u∗(0)(kP ), ūu∗(0)(kP )) is non-increasing
with k. It is bounded from below, since Jaux is continuous and XN is compact.
It follows that the sequence must converge.

Lemma 3.5.8. For all x(0) ∈ ΠX it holds that Jaux(xcMPC,x̃(0)(kP ), ūu∗(0)(kP ))
is constant for all k ∈ I≥0. �

Proof. By Ass. 3.5.2 it follows that ūu∗(0)(0) ∈ Π
N/P
U and that the correspond-

ing states follow the periodic orbit ΠX. W.l.o.g. define

π̃(x̃) :=

{
(upi ,..,u

p
P−1,..,u

p
i−1), x̃ = (∗,.., ∗ ,xpi ) ∈ Π̃X,∗ ∈ X,i ∈ I[0,P−1]

κ̃f (x̃), else
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3 Economic MPC for optimal periodic operation

as new, valid terminal controller w.r.t. Ass. 3.2.1. By using π̃(x̃) for con-
structing ūu∗(0)(kP ) we always have a periodic completion according to
Π in case x(0) ∈ ΠX, i.e. ūu∗(0)(kP ) ∈ Π

N/P
U for all k ∈ I≥0. We con-

clude, that for all k ∈ I≥0 the arguments of Jaux are constant and therefore
Jaux(xcMPC,x̃(0)(kP+P ), ūu∗(0)(kP+P )) = Jaux(xcMPC,x̃(0)(kP ), ūu∗(0)(kP ))
which proves the statement.

Lemma 3.5.9. For all x̃(t) ∈ X̃N the function V (.) (3.13) is finite. �

Proof. By noting the telescoping sum in V (.) (3.13) we get

V (x̃) = −
∞∑
k=0

[Jaux(xcMPC,u∗(0)(kP + P ),ūu∗(0)(kP + P ))

− Jaux(xcMPC,u∗(0)(kP ),ūu∗(0)(kP ))]

= − lim
k→∞

Jaux(xcMPC,u∗(0)(kP + P ),ūu∗(0)(kP + P ))

+ Jaux(xcMPC,u∗(0)(0),ūu∗(0)(0))

= Jaux(xcMPC,u∗(0)(0),ūu) + constant

using Lem. 3.5.7. Jaux is continuous in x and u because of the stage cost
` is assumed to be continuous in x and u, and Vf is continuous. Therefore,
the functional Jaux is bounded since XN is compact which completes the
proof.

Lemma 3.5.10. The function V (.) (3.13) is positive definite w.r.t. Π̃X. �

Proof. Using Lem. 3.5.6 we have

V (x̃) = −
∞∑
k=0

[Jaux(xcMPC,u∗(0)(kP + P ),ūu∗(0)(kP + P ))

− Jaux(xcMPC,u∗(0)(kP ),ūu∗(0)(kP ))]

≥
∞∑
k=0

α
(
|(x̃cMPC,u∗(0)(kP ), ˜̄u∗(kP ))|Π

)
≥
∞∑
k=0

α
(
|x̃cMPC,u∗(0)(kP )|ΠX

)
.

This implies that V (x̃) > 0 for all x̃ /∈ Π̃X. If x̃ ∈ Π̃X we have by Lem. 3.5.8
that V (x̃) = 0 and by Lem. 3.5.9 that V is bounded from above.
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3.5 Asymptotic stability of the optimal periodic orbit

Lemma 3.5.11. There exists a K∞ function α1(.) such that for all x̃ ∈ XN we
have V (x̃) ≥ α1(|x̃|ΠX). �

Proof. Lem. 3.5.10 states that V (x̃) is positive definite w.r.t. ΠX. Analogously
to [13, p. 341] we define the non-decreasing function

α̂(|x̃|ΠX) := min
x̄∈X̃N :|x̄|ΠX≥|x̃|ΠX

V (x̄).

Using the lower bound in the proof of Lem. 3.5.10 one can show that
α̂(|x̃|ΠX) → ∞ as |x̃|ΠX → ∞. Therefore α̂ is radially unbounded. Since
α̂(|x̃|ΠX) is strictly positive for |x̃|ΠX > 0, it is possible to lower bound
this non-decreasing function by one that is strictly increasing and radially
unbounded [13, p. 341] which we choose to be α1 to obtain the desired
result.

Lemma 3.5.12. There exist aK∞ function α2(|x̃|ΠX) such that V (x̃) ≤ α2(|x̃|ΠX).
�

Proof. Define

α2(|x̃|ΠX) := max
x̄∈X̃N :|x̄|ΠX≤|x̃|ΠX

V (x̄) + |x̃|ΠX .

The first summand is non-decreasing, with increasing |x̃|ΠX and finite by Lem.
3.5.9. By optimality it is greater or equal than V (x̃). The second summand is
strictly increasing in |x̃|ΠX . Therefore α2(|x̃|ΠX) is strictly increasing. Further,
the second summand is radially unbounded which completes the proof.

Theorem 3.5.13 (Asymptotic stability). If Ass. 3.2.1, 3.2.3, 3.5.1 and 3.5.2
are fulfilled, then under application of Alg. 1 the P -step system according to the
system (1.5) is asymptotic stable w.r.t. the set Π̃X with region of attraction3 X̃N .
�

Proof. From Lem. 3.5.11 and Lem. 3.5.12 there exist functions α1, α2 ∈ K∞
such that

V (x̃(t)) ≥ α1(|x̃(t)|ΠX)

V (x̃(t)) ≤ α2(|x̃(t)|ΠX).

3The region of attraction is the set from which we can reach the terminal region with respect to the
last state of the P -step system state.
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3 Economic MPC for optimal periodic operation

Further by the definition of V (.) (3.13) and Lem. 3.5.6, we have for t ∈ I≥0

V (x̃cMPC,u∗(0)(t+ P ))− V (x̃cMPC,u∗(0)(t))

= Jaux(xcMPC,u∗(0)(t+ P ),ūu∗(0)(t+ P ))

− Jaux(xcMPC,u∗(0)(t),ūu∗(0)(t))

≤ −α(|(x̃cMPC,u∗(0)(t), ũ
∗(t))|Π)

≤ −α(|x̃cMPC,u∗(0)(t)|ΠX).

Since α ∈ K∞ it follows by e.g. [20, Thm. B.13] asymptotic stability for the
closed loop P -step system using the candidate input sequence. By optimality
we have

Jaux(x̃cMPC,u∗(0)(t+ P ),u∗(t+ P ))

≤ Jaux(x̃cMPC,u∗(0)(t+ P ), ūu∗(0)(t+ P ))

from which it follows also asymptotic stability of the closed loop system under
application of Alg. 1.

Remark 3.5.14. Asymptotic stability of the P -step system according to the
nominal system (4.1) w.r.t. the set of shifted trajectories regarding the orbit
Π means, that the nominal system periodically converges to the orbit Π. In
particular this does not mean, that the nominal system asymptotically converges
to ΠX, since it could be that we move away from the set Π̃X at some time instance
during P consecutive steps. Further, in case ΠX contains a steady-state x̄ ∈ ΠX
we can guarantee that we do not converge to the steady state, as it could be the
case in e.g. [24], but to periodic operation. �

Remark 3.5.15. The stability proof presented in this Section is more general
than the classical proof provided in [1], because it can be used to prove stability
w.r.t. to arbitrary sets A in case of strict dissipativity, i.e. using α(|x̃|A). �

3.6 Related work: Economic MPC without terminal
constraints

For comparison we introduce a related method [18] and give the respective
theoretical results (asymptotic average performance and stability w.r.t. to the
optimal periodic orbit). The main difference is, that the method does not need
a terminal set and terminal cost. Consider the open loop optimization problem
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3.6 Related work: Economic MPC without terminal constraints

(PEMPCU-P)



minu∈UN

∑N−1
k=0 `(xu(k,x),u(k))

s.t. for all k ∈ I[t,t+N−1] :

xu(k + 1,x) = f(xu(k),u(k),0)

xu(k,x) ∈ X
u(k) ∈ U
xu(0,x) = x.

The MPC scheme [18] is given in Alg. 2 for easier reference.

Assumptions

In addition to the strict dissipativity assumption (Ass. 3.5.1) there are addi-
tional controllability assumptions, required in [18].

Assumption 3.6.1 (Local controllability on Bκ(ΠX) [18]). There exists κ > 0,
M ′ ∈ I≥0 and ρ ∈ K∞ such that for all z ∈ ΠX and all x,y ∈ Bκ(z) ∩ X there
exists a control sequence u ∈ UM

′
(x) such that xu(M ′, x) = y and

|(xu(k, x), u(k))|Π ≤ ρ(max{|x|ΠX , |y|ΠX})

holds for all k ∈ I[0,M′−1]. �

Assumption 3.6.2 (Finite Time Controllability into Bκ(ΠX) [18]). For κ > 0
from Ass. 3.6.1 there exists M ′′ ∈ I≥0 sucht that for each x ∈ X there exists
k ∈ I[0,M′′] and u ∈ Uk(x) such that xu(k,x) ∈ Bκ(ΠX). �

Assumption 3.6.3 (Global recursive feasibility). For all x ∈ X it holds U∞(x) 6=
∅. �

Algorithm 2 Economic MPC without terminal constraints for optimal periodic
operation

1: procedure EMPCU-P(initial state x(0))
2: for k = 0,1,... do
3: solve (PEMPCU-P) with initial condition xMPC(kP )
4: apply the first P inputs of u∗(kP ) to the system (1.5)
5: end for
6: end procedure
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3 Economic MPC for optimal periodic operation

Remark 3.6.4. Ass. 3.6.3 ensures, that Alg. 2 is recursive feasibility. This is a
rather restrictive assumption and a general drawback of MPC schemes without
a terminal set with a terminal controller. Because it is not possible to use the
terminal controller in order to construct the feasible input sequence as in Thm.
3.3.1. �

Asymptotic average performance

If the controllability and recursive feasibility assumptions hold and in case of
strict dissipativity, it follows that the closed loop asymptotic average perfor-
mance under application of Alg. 2 is nearly optimal. Since there is no terminal
cost, the same closed loop performance can only be achieved in case N →∞.

Corollary 3.6.5 (Asymptotic average performance [18]). Consider the P-step
MPC scheme as defined via Alg. 2 and suppose that Ass. 3.5.1, 3.6.1, 3.6.2 and
3.6.3 are satisfied for some minimal P -periodic orbit Π ⊆ int(X× U) of system
(1.5) and with M ′ = iP for some i ∈ I≥1. Furthermore, assume that f and
` are continuous and ` is bounded on X × U. Then system (1.5) is optimally
operated at the periodic orbit Π and there exist δ1, δ2 ∈ L and N̄ ∈ I≥1 such
that for the resulting closed-loop system, the performance estimate

lim sup
T→∞

∑T−1
k=t `(xMPC(k),uMPC(k))

T
≤ (3.18)

(1/P )

P−1∑
k=0

`(xpk, u
p
k) + δ1(N − P )/P + δ2(N − P ) (3.19)

is satisfied for all x ∈ X, all N ∈ I≥N̄+P and all K ∈ I≥0. �

Proof. The verification can be found in [18].

Practical asymptotic convergence to optimal orbit

Using the same conditions as needed for nearly optimal performance in the
previous section, in [18] it is also shown, that the closed loop under Alg. 2
will converge into a neighbourhood of the optimal periodic orbit Π. Similarly,
the neighbourhood can be made arbitrarily small by choosing N large enough.

Theorem 3.6.6 (Practical asymptotic convergence to optimal orbit [18]).
Suppose that the conditions of Cor. 3.6.5 are satisfied and that the storage
function λ̃ is continuous on XP . Then there exists N̂ ∈ I≥1 such that for all
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3.7 Example: Simple supply chain network

N ∈ I≥N̂ , the closed-loop system resulting from application of the P -step MPC
scheme defined in Alg. 2 practically asymptotically converges to the optimal
periodic orbit Π, i.e., there exists ν ∈ L and for each x ∈ X some k̂ ∈ I≥0

and j ∈ I[0,P−1] such that (xMPC(k), uMPC(k)) ∈ Bν(N)

(
xp[k+j],u

p
[k+j]

)
for

all k ∈ I≥k̂. �

Proof. The proof can be found in [18].

3.7 Example: Simple supply chain network

Consider the simple supply chain example, introduced in Sec. 1.3. For easier
reference, consider the states

x := [xS,1,xS,2, xT,P ,xT,L,xR]>.

Simple supply chain: Economic MPC with terminal cost and
constraint

In order to apply Alg. 1, we have to make sure that all assumptions are
satisfied. In Sec. 2.5 we already discussed strict dissipativity. For Ass. 3.2.1
choose the terminal set

Xf :=

x ∈ {X ∩ {


xS,1 = 0
xS,2 = 0
xT,P = 1

xT,L = 2− xR
xR ≤ 0

 ∪

xS,1 = 2
xS,2 = 0
xT,P = 0
xT,L = 0
xR = 1

}}
 ,

terminal controller

κ̃f (x̃) :=



 1

xR − 2

2− xR − xT,L + xS,2

 ,
1

2

0


 , xT,P = 1

([1,2,0]>,[1,− 2,2]>), xT,P = 0

with x̃ = ((∗),x), (∗) ∈ R5 and terminal cost defined as

Vf (x) := xT,P (−11xR).
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3 Economic MPC for optimal periodic operation

We can interpret the terminal setting as follows: Consider the subset of
Xf in which we fix the possible graph configuration such that the truck is
located at the retailer. The constraints are chosen such that the retail store
can have optimal (= 0) or negative (suboptimal) values which increases the
initial feasible region of (PEMPC-P). The truck however must contain as many
goods as needed in order to fill up the retail store to the optimal value (= 0)
plus the value of the optimal orbit. This is done by the first three inputs of the
first part of the terminal controller. The second three inputs of the first part of
κ̃f then equal the optimal periodic orbit. In case, the the truck is located at
the supplier (second case of Xf ) we simply use the optimal input sequence
(second part of κ̃f ). We verify the terminal setting by minimizing Ass. 3.2.1,
3. Since the minimization problem is convex for a given truck position and
we obtained 0 as a result for every truck position it follows that the terminal
set, controller and cost fulfill Ass. 3.2.1. In addition, by solving (PEMPC-P) for
every x ∈ ΠX, we obtained the corresponding periodic input trajectory, i.e.
u∗ ∈ Π

N/P
U for various4 N = N1P , N1 ∈ I≥1 and therefore Ass. 3.5.2 is

satisfied.
In Fig. 3.1 the closed loop results are shown using a prediction horizon

N = 2, starting off the optimal periodic orbit. The bottom plot in Fig. 3.1
shows the distance to the optimal periodic orbit. As mentioned in Rem. 3.5.14
we can see, that we keep the distance to the optimal periodic orbit within one
time instance at the t = 1. But we asymptotically converge to the optimal
orbit in P -step system steps.

Simple supply chain: Economic MPC without terminal cost and
constraint

In order to apply Alg. 2 we have to check Ass. 3.6.1 and Ass. 3.6.2. Again we
already discussed strict dissipativity in Sec. 2.5. For verification of the control-
lability assumptions we used the Multi-Parametric-Toolbox [12]. Starting at
the optimal periodic orbit, we calculated the forward and backward reachable
sets. This can be done easily by considering the P -step system representation
and fixing the truck trajectory to the optimal periodic orbit. This yields a
linear time invariant system representation. It turns out that the forward and
backward invariant sets converge to the feasible set (1.16), from which we
conclude that Ass. 3.6.2 and Ass. 3.6.2 hold. Note, that since Π ⊆ int(X× U)
does not hold in our example, Cor. 3.6.5 holds neither.

4All N that will be used in the experiments.
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3.7 Example: Simple supply chain network

In Fig. 3.2 we show the closed loop distance to the optimal periodic orbit
for different planning horizons using the same initial condition as in the
previous paragraph. As expected, the longer the planning horizon, the faster
we converge to the neighbourhood of the optimal orbit. For the particular
initial condition considered here, we must choose a planning horizon N ≥ 6
in order to converge exactly to the optimal orbit. In Fig. 3.3 a sample closed
loop trajectory for N = 4 is shown.

Comparison: With disturbances

We compare both Algorithms in Tab. 3.2 under the presence of uniformly
distributed disturbances

w(k) ∈




0
0
0
0
−1

 ,


0
0
0
0
−2

 ,


0
0
0
0
−3


 . (3.20)

Therefore we took the average performance for different planning horizons by
simulating 4000 time steps. Alg. 1 yields for N = 4 similar performance as
Alg. 2 for N = 5. The terminal constrained version leads to infeasible online
optimization problems for N = 2 due to the disturbances. The unconstraint
version is unstable/infeasible for N = 3 and does not yield any better perfor-
mance for planning horizons N > 5. This is surprising, because as shown in
Fig. 3.2, for a special initial condition we need N = 6 to actually converge to
the optimal orbit. In Fig. 3.4 a sample closed loop trajectory of Alg. 1 under
disturbances is shown, and in Fig. 3.5 for Alg. 2 respectively.
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3 Economic MPC for optimal periodic operation

Table 3.2: Comparison of Alg. 1 and Alg. 2 applied to the simple supply chain
model under disturbances and with different planning horizons. Shown is the
approximate average performance for 4000 time steps.

Algorithm Planning hor. N Avg. Performance
Alg. 1 2 infeasible
Alg. 1 4 36.71
Alg. 2 3 →∞
Alg. 2 4 45.92
Alg. 2 5 35.29
Alg. 2 6 36.07
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Figure 3.1: Closed loop results of the simple supply chain network using Alg.
1 and N = 2.
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23/03/2017 plot.svg

file:///Users/Kim/Projects/rempc_periodic_behavior/documentation/plots/simple/run_without_terminal_constraints_closed_loop_I_T3/plot.svg 1/1

Figure 3.2: Distance to the optimal periodic orbit of the closed loop system
under application of Alg. 2 with different planning horizons.
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Figure 3.3: Closed loop results of the simple supply chain network using Alg.
2 and planning horizon N = 4.
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Figure 3.4: Closed loop results of the simple supply chain network under
disturbances using Alg. 1 and planning horizon N = 4.
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Figure 3.5: Closed loop results of the simple supply chain network under
disturbances using Alg. 2 and planning horizon N = 6.
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4 Tube-based robust economic MPC for
periodic operation

4.1 Introduction

In applications, external disturbances can have significant impact to the system
dynamics. In most cases this leads to poor performance as demonstrated in the
previous chapter, or even in a loss of feasibility which could lead to safety risks.
In order to overcome the afore mentioned drawbacks, in [4] a robust economic
control scheme was developed. It is based on an auxiliary controller, which
keeps the disturbed system state inside a tube around a nominal (virtual)
system state. This way, knowledge about the disturbances which act on the
system can be explicitly exploited in the process of controller design, yielding
performance improvements and safety guarantees.

Using the concept of [4], we study the case in which periodic operation
is optimal, instead of steady state operation. We develop a tube-based ro-
bust economic model predictive control scheme for robust optimal periodic
operation. To this end we extend the notion of robust optimal steady-state
operation of a system to robust optimal periodic operation. The algorithm we
propose is proven to be recursively feasible and has an average performance
which is no worse than that of robust optimal periodic operation. By linking
recent results regarding a certain dissipativity inequality as sufficient condition
for optimal periodic operation [11,19] to the case of robust optimal periodic
operation, we establish a checkable sufficient condition that implies that a
system is robustly optimally operated at periodic operation.

Finally, if a stronger dissipativity criterion, namely strict dissipativity is
fulfilled, our control scheme is then proven to asymptotically stabilize the
’tube’ around the robust optimal periodic orbit.
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4 Tube-based robust economic MPC for periodic operation

4.2 Invariant error sets

Definition 4.2.1 (Error dynamics). Define the nominal system as

z(t+ 1) = f(z(t),v(t),0), z(0) = z. (4.1)

Let the error between the real, disturbed system state x(t) and the nominal
system state z(t) be defined as e(t) := x(t)− z(t). Further let

u(t) = φ(v(t),x(t),z(t)) ∈ U (4.2)

be an error feedback in order to keep the real system state x(t) close to the
nominal system state z(t). The error dynamics is then defined as

e(t+ 1) = f(x(t),φ(v(t),x(t),z(t)),w(t))− f(z(t),v(t),0). (4.3)

�

Definition 4.2.2 (Robustly control invariant set [4]). A set Ω ⊆ Rn is robustly
control invariant (RCI) for the error system (4.3) if and only if there exists a
feedback law of the form (4.2) such that for all x(t),z(t) ∈ X with e(t) ∈ Ω
and all v(t) ∈ U,w ∈W it holds that e(t+ 1) ∈ Ω and u(t) ∈ U. �

The concept of tube-based robust model predictive control is to perform
the open-loop optimization for the nominal system and then apply the input
according to (4.2) to the real system. This way we guarantee that the real,
disturbed system state x(t) will always stay within an compact RCI set Ω
around the nominal, calculated (predicted) states z(t).

Remark 4.2.3 (Tightened constraints for nominal system [4]). In order to
guarantee that (x,u) ∈ X × U under application of (4.2) we must tighten the
state and input constraints X and U of (4.1) to

Z̄ := {(z,v) ∈ X× U|(x,φ(v,x,z)) ∈ X× U for all x ∈ {z} ⊕ Ω}. (4.4)

In the following we denote the projection of Z̄ on X as X̄ and the projection on U
as Ū respectively. �

4.3 Robust periodic cost functional

Assumption 4.3.1 (Existence of RCI set). There exists an φ : Ū× X× X̄→ U
according to (4.2) providing an appropriate control law, that implies an RCI set
Ω for error dynamics (4.3). �
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4.3 Robust periodic cost functional

Definition 4.3.2 (Robust optimal periodic orbit). Let Ass. 4.3.1 hold. The ro-
bust optimal periodic orbit Π∗ with optimal period length P ∗ of a disturbance-
affected system (1.5) for a given stage cost function (1.6) is defined as

{P ∗,Π∗} = argmin
P∈I≥1,Π∈SP

Π

1

P

P−1∑
i=0

(∫
x
p
i ∈{z

p
i }⊕Ω

`(xpi , φ(vpi ,x
p
i ,z

p
i ))dx

)
(4.5)

with (zpi , v
p
i ) ∈ Π∗ and with Ω an RCI set. In case of multiple solution pairs

choose any solution with minimal period length. �

Remark 4.3.3. Since the real, disturbance-affected system stays within the tube
around the robust optimal periodic orbit, Def. 4.3.2 defines the best periodic orbit
for the nominal system, when averaging the cost over all possible disturbance
affected trajectories of the real system inside the tube. The definition could be
more precise by incorporating stochastic information regarding the disturbances.
�

Next, we define the integrated stage cost function for system (1.5) and the
corresponding integrated stage cost for the P -step system (1.9).

Definition 4.3.4 (Integrated stage cost function [4]). Consider system (1.5)
with stage cost function (1.6). Given an error feedback u = φ(v,x,z) and a
corresponding RCI set Ω, the integrated stage cost function is defined as

`int(z,v) :=

∫
x∈{z}⊕Ω

`(x,φ(v,x,z))dx. (4.6)

�

Definition 4.3.5 (Integrated stage cost function of P -step system). Consider
the P -step system (1.9) according to system (1.5). Given an error feedback
u = φ(v,x,z) and a corresponding RCI set Ω, the integrated P -step system
stage cost function is defined as

˜̀int(z̃,ṽ) :=

P−1∑
i=0

∫
x̃i∈{z̃ṽ(i,zP−1)}⊕Ω

` (x̃i,φ(ṽi,x̃i,z̃ṽ(i,zP−1))) dx. (4.7)

�
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4 Tube-based robust economic MPC for periodic operation

4.4 Assumptions and algorithm

In the following we use the same notation as described in Tab. 3.1. The same
notation is also used for the nominal states by replacing x with z and u with v
respectively.

Assumption 4.4.1 (Terminal controller, set and cost). Let (zpi ,v
p
i ) ∈ Π for

i ∈ I[0,P−1] and let Ass. 4.3.1 hold. There exists a compact X̄f ⊆ X̄ such that
for all i ∈ I[0,P−1] the set of phase shifted orbits Π̃X of ΠX is contained in X̄Pf .
Further assume that there exists a feedback law ˜̄κf : X̄P → ŪP and a continuous
terminal cost V̄f : X̄f → R such that ∀z̃ with zP−1 ∈ X̄f :

1. ˜̄κf (z̃) ∈ ŪP . feasibility

2. fP (z̃,˜̄κf (z̃),0) ∈ X̄Pf . positive invariance of X̄Pf

3.

V̄f ((fP (z̃, ˜̄κf (z̃),0))P−1)− V̄f ((z̃)P−1)

≤ −˜̀(z̃, ˜̄κf (z̃)) +

P−1∑
i=0

`int(zpi , v
p
i ).

Without loss of generality assume Vf (z) ≥ 0 ∀z ∈ X̄f . �

Remark 4.4.2. Ass. 4.4.1 is the modification of Ass. 3.2.1 w.r.t. to the tightened
sets and the integrated stage cost function. �

Let N = N1P with N1 ∈ I>0. Consider

(PREMPC-P)



minv∈ŪN J int
MPC(z,v)

s.t. for all k ∈ I[0,N−1] :

zv(k + 1,z) = f(zv(k,z),v(k),0)

(zv(k,z),v(k)) ∈ Z̄
zv(N,z) ∈ X̄f
zv(t)(0,z) = z

with finite time open loop cost

J int
MPC(z,v) : =

N−1∑
k=0

`int(zu(k,z),v(k)) + V̄f (zv(N,z))

=

N/P−1∑
k=0

˜̀int(z̃v(kP,z),ṽ(kP )) + V̄f (zv(N, z)). (4.8)
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4.5 Recursive feasibility and asymptotic average performance

Assumption 4.4.3. The optimization problem (PREMPC-P) is feasible at time
t = 0. �

In Alg. 3 the P -step robust economic model predictive control algorithm for
optimal periodic operation is shown. If Alg. 3 is applied to system (1.5) we
denote the closed loop dynamics by

zMPC(t+ 1) = f(zMPC(t),vMPC(t),0) (4.9)

of the nominal system and

xMPC(t+ 1) = f(xMPC(t),uMPC(t),w(t)) (4.10)

for the real system.

4.5 Recursive feasibility and asymptotic average
performance

Theorem 4.5.1 (Recursive feasibility of (PREMPC-P)). If Ass. 4.3.1, Ass. 4.4.1
and Ass. 4.4.3 hold, then Alg. 3 is recursively feasible. �

Proof. The proof can be done analogously to the proof of Thm. 3.3.1 for
recursive feasibility of the nominal system (4.9). In particular, by Ass. 4.3.1 it
immediately follows recursive feasibility of the real system (4.10).

Algorithm 3 Robust economic model predictive control for optimal periodic
operation

1: procedure REMPC-P(initial state x(0))
2: for k1 = 0, P, 2P, .. do
3: solve (PREMPC-P)
4: for k2 = 0,1,..,P − 1 do
5: uMPC(k1 + k2) = φ(v∗(k1 + k2),xMPC(k1 + k2), zMPC(k1 + k2))
6: vMPC(k1 + k2) = v∗(k1 + k2)
7: end for
8: end for
9: end procedure
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4 Tube-based robust economic MPC for periodic operation

Theorem 4.5.2. If Ass. 4.4.1 and Ass. 4.4.3 hold, then under application of Alg.
3 the closed loop system (4.10) has a robust average performance which is no
worse than that of the robust optimal periodic orbit {P ∗,Π∗}, i.e.

1

P ∗

P∗−1∑
k=0

`int(zpk ,v
p
k) ≥ lim sup

T→∞

∑T−1
t=0 `int(zMPC(t),vMPC(t))

T
(4.11)

with (zpk ,v
p
k) ∈ Π∗ for k ∈ I[0,P∗−1]. �

Proof. The proof follows the lines of the proof of Thm. 3.4.1 by setting
` := `int and Vf := V̄f .

4.6 Robust optimal periodic operation

In this section we extend the concept of robust optimal steady-state operation,
as it was introduced in [4], to the case of robust optimal periodic operation.
Therefore we adapt [4, Def. 4] with respect to [18, Def. 3].

Definition 4.6.1 (Robust optimal periodic system operation). System (1.5) is
said to be robustly optimally operated at periodic operation with respect to
the stage cost (1.6) and the constraints x ∈ X and u ∈ U if for any feasible
nominal input sequence v(.) and its associated nominal state sequence zv(.) it
holds that

lim inf
T→∞

∑T
t=0 `

int(z(t),v(t))

T
≥ 1

P

P−1∑
k=0

`int(zpk , v
p
k), (4.12)

where (zpk , v
p
k) ∈ Π and Π is the robust optimal periodic orbit as defined in

(4.5). �

In order to come up with a sufficient condition for optimality of a given
periodic orbit Π in the sense of Def. 4.6.1, we introduce the following auxiliary
result as an extension to the nominal (non-integrated) stage cost case from [19,
Lem. 13]

Lemma 4.6.2 (Modified from [19]). System (1.5) is robustly optimally oper-
ated at a P -periodic orbit Π if and only if the corresponding P -step system is
robustly optimally operated at the steady state corresponding to Π. �
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4.6 Robust optimal periodic operation

Proof. The proof follows along the lines of [19]. Consider z ∈ X̄,v ∈ Ū∞(z)
and let ṽ(t) := (v(tP ),v(tP + 1),...,v((t+ 1)P − 1)). We have

lim inf
T→∞

∑PT−1
t=0 `int(zv(t,z),v(t))

TP
= lim inf

T→∞

∑T−1
t=0

˜̀int(z̃v(t,z),ṽ(t))

TP
.

If the P -step system is robustly optimallyoperated at steady-state as introduced
in [4, Def. 4] we get

1

P
lim inf
T→∞

∑T−1
t=0

˜̀int(z̃v(t,z),ṽ(t))

T
≥ 1

P
˜̀int(z̃∗,ṽ∗)︸ ︷︷ ︸

=
∑P

k=0
`int(z

p,∗
k

,v
p,∗
k

)

(4.13)

with (z̃∗,ṽ∗) ∈ Π̃. Further we state that

lim inf
T→∞

∑PT−1
t=0 `int(zv(t,z),v(t))

TP
= lim inf

T→∞

∑T−1
t=0 `int(zv(t,z),v(t))

T
. (4.14)

Using (4.13) and (4.14) we get

lim inf
T→∞

∑T−1
t=0 `int(zv(t,z),v(t))

T
≥ 1

P

P∑
k=0

`int(zp∗k , v
p∗
k ) (4.15)

which means that if the P -step system is robustly optimallyoperated at steady
state it follows that the corresponding system is optimally operated at the
periodic orbit Π. Further, if the original system is optimally operated at the
periodic orbit Π we have that (4.15) is valid and with (4.14) also (4.13) holds.
Therefore it follows that in this case, the P -step system is optimally operated
at the steady state (z̃∗,ṽ∗) corresponding to Π. Thus we have necessary and
sufficient arguments for the statement postulated. It remains to show that
(4.14) holds with equality. Therefore use

N(T ∗) := P − T ∗modP

to state

lim inf
T→∞

∑PT−1
t=0 `int(zv(t,z),v(t))

TP
= lim inf

T∗→∞

∑T∗+N(T∗)−1
t=0 `int(zv(t,z),v(t))

T ∗ +N(T ∗)
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4 Tube-based robust economic MPC for periodic operation

since the sequences consist of the same elements for T > 0 and T ∗ > 0. By
the definition of ’lim inf ’ it holds

lim inf
T∗→∞

∑T∗+N(T∗)−1
t=0 `int(zv(t,z),v(t))

T ∗ +N(T ∗)
=

lim
Γ∗→∞

 inf
T∗≥Γ∗


∑T∗−1
t=0 `int(zv(t,z),v(t))

T ∗ +N(T ∗)︸ ︷︷ ︸
→

∑T∗−1
t=0 `int(zv(t,z),v(t))

T∗

+

∑T∗+N(T∗)−1
t=T∗ `int(zv(t,z),v(t)

T ∗ +N(T ∗)︸ ︷︷ ︸
→0





which shows that (4.14) is true and thus the proof is complete.

Using Lem. 4.6.2 we are now able to give the following checkable necessary
condition for robust optimally periodic operation as an extension to [4, Thm.
2].

Theorem 4.6.3. Consider system (1.5) and let Ω be an RCI set for the associated
error dynamics (4.3). If the nominal system (4.1) is dissipative with respect to
the periodic orbit Π, i.e. there exists a storage function λ̃ : RPn → R such that
for all z̃ ∈ X̄P , ṽ ∈ ŪP

λ̃(fP (z̃, ṽ,0))− λ̃(z̃) ≤ ˜̀int(z̃, ṽ)−
P−1∑
k=0

`int(zpk ,v
p
k) (4.16)

and (zpk ,v
p
k) ∈ Π, k ∈ I[0,P−1], then system (1.5) is robustly optimally operated

at the periodic orbit Π. �

Proof. The proof is adapted from [3]. Consider z ∈ X,v ∈ U∞(z). Taking the
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average of both sides of (4.16) then yields

lim inf
T→∞

∑T−1
t=0 (λ̃(z̃v(tP + P,z))− λ(z̃v(tP,z)))

T

≤ lim inf
t→∞

∑T−1
t=0

˜̀int(z̃v(tP,z), ṽ(tP ))

T
−
P−1∑
k=0

`int(zpk ,v
p
k)

⇔

− lim inf
T→∞

∑T−1
t=0 (λ̃(z̃v(tP + P,z))− λ(z̃v(tP,z)))

T︸ ︷︷ ︸
=:(?)

+ lim inf
t→∞

∑T−1
t=0

˜̀int(z̃v(tP,z), ṽ(tP ))

T
≥
P−1∑
k=0

`int(zpk ,v
p
k).

By investigating (?) we note the telescoping series and assume w.l.o.g.1 λ̃(z̃) ≥
0 for all z̃ ∈ X and get

lim inf
T→∞

λ̃(z̃v(tP,z))− λ(z̃v(0))

T
≥ lim

Γ→∞

(
inf
T≥Γ
− λ̃(z̃v(0))

T

)
= 0.

Therefore we can conclude that (?) ≥ 0 which completes the proof.

Definition 4.6.4. The nominal system is called robustly strict dissipative with
respect to the robust optimal periodic orbit Π if there exists a storage function
λ̃ : RPn → R and in addition there exists a function α ∈ K∞ such that

λ̃(fP (z̃, ṽ,0))− λ̃(z̃) ≤ ˜̀int(z̃, ṽ)−
P−1∑
k=0

`int(zpk ,v
p
k)− α(|(z̃, ṽ)|Π). (4.17)

�

4.7 Stability analysis

In this section we investigate stability by constructing a Lyapunov function
based on previous assumptions. The proof for stability of the nominal system
is conceptually related to [1] and [4].

1Because X is compact.
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4 Tube-based robust economic MPC for periodic operation

Assumption 4.7.1. The nominal system is robustly strict dissipative with respect
to Π according to Def. 4.6.4 with a continuous storage function λ̃. �

Assumption 4.7.2. For all z(0) ∈ ΠX the solution v∗ of (PREMPC-P) is element
of Π̃

N/P
U such that for the corresponding states it holds z̃v∗(k) ∈ Π̃X for all

k ∈ I[P−1,N ]. �

Compare with Rem. 3.5.3. Consider the set

ZN := {x ∈ X̄|∃v ∈ ŪN (z) s.t. zv(N,x) ∈ X̄f} (4.18)

for which (PREMPC-P) is feasible and

Z̃N := {z̃ ∈ X̄P |zP−1 ∈ ZN}.

Corollary 4.7.3 (Asymptotic stability of nominal system). If Ass. 4.3.1, 4.4.1,
4.4.3, 4.7.1, and 4.7.2 are fulfilled, then under application of Alg. 3 the P -step
system according to the nominal system (4.9) is asymptotic stable w.r.t. the set
Π̃X with region of attraction2 Z̃N . �

Proof. The proof follows directly by choosing x := z, u := v, X := X̄, U := Ū
,` := `int and Vf := V̄f from Thm. 3.5.13

By using the typical argument in tube-based robust MPC [20] and partic-
ularly in the sense of [4, Thm. 4] we state stability of the composition of
the nominal and real P -step system. Therefore note, that the RCI set for the
P -step system is given by ΩP ⊆ RnP .

Theorem 4.7.4 (Asymptotic stability of composite system). If Ass. 4.3.1, 4.4.1,
4.4.3, 4.7.1, and 4.7.2 are fulfilled, then under application of Alg. 3, the set
A := Π̃X × Π̃X ⊕ ΩP is asymptotically stable for the composition of the P -step
systems according to (4.1) and (1.5). The region of attraction is Z̃N × Z̃N ⊕ΩP .
�

Proof. By Cor. 4.7.3 there exists a KL function β such that |z̃MPC(tP )|Π̃X
≤

β(|z̃(0)|Π̃X
,tP ). As x̃MPC(tP ) = z̃MPC(tP ) + ẽMPC(tP ) and ẽMPC(tP ) ∈ ΩP for

all t ∈ I≥0 we calculate

|x̃MPC(tP )|Π̃X⊕ΩP = |z̃MPC(tP ) + ẽMPC(tP )|Π̃X⊕ΩP

≤ |z̃MPC(tP )|Π̃X

≤ β(|z̃(0)|Π̃X
,tP ).

2The region of attraction is the set from which we can reach the terminal region with respect to the
last nominal state of the P -step system state.
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4.8 Outline: Tube-based robust economic MPC without terminal constraints

Using this, for all ∀t ∈ I≥0

|(z̃MPC(tP ),x̃MPC(tP )|A = |z̃MPC(tP )|Π̃X
+ |x̃MPC(tP )|Π̃X⊕ΩP

≤ 2β(|z̃MPC(0)|Π̃X
,tP )

≤ 2β(|z̃MPC(0),x̃MPC(0))|A,tP ).

This proves that the set A is asymptotically stable for the composite system
with region of attraction Z̃T × Z̃T ⊕ ΩP .

Remark 4.7.5. As mentioned in remark 3.5.14, we do not have asymptotic
stability of the composition of the nominal system and the real system but of the
composition of the respective P -step systems. �

Robust asymptotic convergence of the real system

Thm. 4.7.4 only shows stability of the composite system (4.1) and (1.5), but
not asymptotic stability of the P -step system according to the real closed-loop
system (1.5). Let

z̃(P − 1) = x̃(P − 1) (4.19)

From stability of the nominal system we conclude that there exists a Class KL
function β such that |z̃(tP )|Π̃X

≤ β(|z̃(0)|Π̃X
,tP ). Using z̃(P − 1) = x̃(P − 1)

we have

|x̃(tP − 1)|Π̃X⊕ΩP ≤ β(|z̃(P − 1)|Π̃X
,tP ) (4.20)

and therefore the real P -step system state x̃ (robustly) converges to Π̃X ⊕ ΩP

by choosing the first P states of z according to (4.19). This does not imply
Lyapunov stability of x̃ w.r.t. Π̃X ⊕ ΩP , as e.g. discussed in [20, p. 236].

4.8 Outline: Tube-based robust economic MPC without
terminal constraints

Without any rigurous statement or proof we propose another tube-based robust
economic MPC method by combining the tube-based concept introduced in the
previous chapter with the terminal set and cost free method [18], introduced
in Sec. 3.6.

Let N ∈ I>0 and consider the nominal open loop optimization problem
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4 Tube-based robust economic MPC for periodic operation

(PREMPCU-P)



minv∈ŪN

∑N−1
k=0 `int(zv(k,z), v(k))

s.t. for all k ∈ I[0,N−1] :

zv(k + 1,z) = f(zv(k,z),v(k),0)

zv(k,z) ∈ X̄
v(k) ∈ Ū
zv(0,z) = z

We propose Alg. 4 and state the conjecture, that under similar assumptions
with respect to the nominal system and tightened constraints as in Sec. 3.6 as
well as Ass. 4.3.1 one can establish similar performance and stability results
as in the original work [18], but for the composite system with respect to the
set induced by the tube.

4.9 Example: Simple supply chain network

Consider the simple supply chain example introduced in Sec. 1.3 with nominal
disturbances (1.14) and unknown disturbances (3.20). Define for easier
notation in this section

x := [xS,1,xS,2, xT,P ,xT,L,xR]>.

Algorithm 4 Robust economic model predictive control without terminal
constraints for optimal periodic operation

1: procedure REMPCU-P(initial state x(0))
2: for k1 = 0, P, 2P, .. do
3: solve (PREMPCU-P)
4: for k2 = 0,1,..,P − 1 do
5: uMPC(k1 + k2) = φ(v∗(k1 + k2),xMPC(k1 + k2), zMPC(k1 + k2))
6: vMPC(k1 + k2) = v∗(k1 + k2)
7: end for
8: end for
9: end procedure
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4.9 Example: Simple supply chain network

Robust control invariant set

In order to construct the robust control invariant set (Def. 4.2.2), we introduce
an auxiliary controller. Let eT := xT,L − zT,L, eR := xR − zR, and

φ(v,x,z) =

{
[vT,L − eT , vS ]>, xT,P = 0

[vT,L + eR, vS − eR]>, xT,P = 1.
(4.21)

We tighten the truck load constraints to 4 ≤ zT ≤ 10 and restrict the truck
position to be at the retailer or to follow the optimal orbit for two consecutive
time instances3. A valid trajectory for the truck position is e.g. supplier, retailer,
supplier, supplier, supplier, retailer. The control law 4.21 can be understood
as follows. As the truck arrives at the retail store, it unloads the nominal
amount vT,L plus the amount of goods which is missing because of the un-
known disturbance eR. Since we tightened the nominal constraint set, we can
guarantee that worst-case demands over one period (4 items) can be handled.
Also, we trigger an additional production of items, at the same time as the
truck unloads at the retailer for disturbance compensation. In the next time
instance, the truck is at the supplier and loads the nominal amount of goods,
plus the amount of goods that are missing in the trucks storage because of
disturbance compensation at the previous time instance, when the truck was
at the retailer storage.

Application of (4.21) leads to the RCI set

Ω =

x ∈ R5 s.t.


0
0
0
−4
−4

 ≤ x ≤


4
0
0
0
0


 . (4.22)

Note that the RCI set of xS,2 is empty, because by (4.21) any additional produc-
tion is directly loaded into the truck without storing them. The corresponding

3This is an extension to the concept of the previous chapter, since we provide a tightened constraint
set for the 2-step graph state.
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reduced nominal feasible set X̄ = X	 Ω with a ∈ R,a > 100 is given by

0 ≤ xS,1 ≤ a
0 ≤ xS,2 ≤ a
4 ≤ xT,L ≤ 10

−a ≤ xR ≤ a

as well as tightened graph constraints for the truck position explained in the
beginning of this paragraph.

Robust optimal periodic operation

Define η1(x) := xS,1 + xT,L + xR and η2(x) := xS,1 + xT,L − 10xR. Using
the RCI set (4.22), the integrated stage cost can be calculated as

`int(z, v) = 0.5zS,2 + vT,P

+



∫ zS,1+4

zS,1

(∫ zT,L

zT,L−4

(∫ 0

zR−4
η1(x)dxR

)
dxT,L

)
dxS,1, for zR ≥ 4∫ zS,1+4

zS,1

(∫ zT,L

zT,L−4

(∫ 0

zR−4
η1(x)dxR +

∫ zR
0

η2(x)dxR
)
dxT,L

)
dxS,1,

for 0 < zR < 4∫ zS,1+4

zS,1

(∫ zT,L

zT,L−4

(∫ zR
zR−4

η1(x)dxR
)
dxT,L

)
dxS,1, for zR ≤ 0

(4.23)

by Fubinis Theorem [9]. Importantly, note that we used the original cost func-
tional for vT,P and zS,2 since the case of an empty RCI set is neither covered
in the original work [4] nor explicitly considered here. As a conjecture we
think, that simply adding the nominal stage cost in the case of an empty RCI
set dimension is not the best treatment in general. However, given our specific
problem structure, it turns out to work well in practice, as the experiments
show. Because of symmetry, the integrals over xS,1 and xT,L yield linear
functions again. However, in the second case of (4.23), we get a quadratic
functional depending on zR. As a consequence we can not apply the explicit
method for verifying strict dissipativity for a given orbit, which was derived in
Sec. 2.3.
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Solving (4.5) using the RCI set (4.22) yields

P̄ = 2, (4.24)

Π̄ ≈






2
0
0
4

4.2727

 ,
1

2
0


 ,




0
0
1
6

3.2727

 ,
 1
−2
2



 (4.25)

with average integrated stage cost 1
2

∑1
k=0 `

int(x̄pk,ū
p
k) ≈ 776.75 and average

nominal stage cost 1
2

∑1
k=0 `(x̄

p
k,ū

p
k) ≈ 10.77 along the periodic orbit. Because

of the convex objective and linear constraints for the fixed truck position
periodic orbit (0,1) we have by the weak slater condition strong duality,
and therefore by Thm. 2.3.3 dissipativity. As mentioned above, we can
not explicitely verify strict dissipatvity using uniqueness of a certain linear
program, because of the quadratic problem structure. Instead, we verified
strict dissipativity experimentally by many (10000) uniformly random chosen
starting points for the optimization problem (4.5). Therefore we used the
Matlab Global Optimization Toolbox, using a local, primal dual optimization
algorithm with several restarts. For each run, we obtained the same optimizer
and therefore we conclude (experimental) strict dissipativity by Thm. 2.3.5.
Again, we only showed strict dissipativity for the fixed truck’s position periodic
orbit (0,1). Because the storage values of the retailer’s and truck’s storage are
just shifted w.r.t. the nominal optimal orbit (1.20), strict dissipativity can be
handled as it was done in Sec. 2.5.

Nominal terminal cost and terminal set

We modify the terminal set and cost, presented in Sec. 3.7 w.r.t. to the
integrated stage cost function. Therefore in order to fulfill Ass. 4.4.1 and Ass.
4.7.2 choose the terminal set

X̄f :=

x̃ ∈ {X̄ ∩ {


xS,1 = 0
xS,2 = 0
xT,P = 1

xT,L = 6− xR
xR ≤ 0

 ∪


xS,1 = 2
xS,2 = 0
xT,P = 0
xT,L = 4

xR = 4.2727

}}
 .
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The terminal controller summarizes two consecutive inputs of the original
system (P = 2). Let

κ̃0
f :=

 1
xR − 3.2727

3.2727− xR + 2− xT,L + 4− xS,2 + 4


and define with x+ := f(x̃0, κ̃

0
f , 0)

κ̃1
f :=

 1
min{x+

S,2, 4.2727− x+
R}

0


and finally

κ̃ :=

{
(κ̃0,>
f ,κ̃1,>

f ), xT,P = 1

([1,− 2,2]>,[1,2,0]>), xT,P = 0.

As terminal cost choose

Ṽf := xT,P 475(3.2727− xR).

The terminal configuration is a straight-forward adaption of the one presented
in Sec. 3.7 for the shifted optimal orbit w.r.t. the retail store values, the
integrated stage cost function and the tightened constraints.

Results

Using the example of the simple supply chain system from Sec. 1.3, we
demonstrate the capabilites and performance of the proposed control scheme
(Alg. 3) and compare it with a ’robustified’ version of an existing control
scheme (Alg. 4). In Fig. 4.1 and Fig. 4.2 we show sample closed loop
simulations. For Alg. 3 a planning horizon N = 4 is used and for Alg. 4,
N = 6, which still yields feasible computation times of the mixed-integer
online optimization problem. Note, that in case of a terminal constraint
and cost, the distance to the optimal periodic orbit is significantly smaller,
compared to the case without terminal constraint and terminal cost. This
leads to a better asymptotic average performance of the proposed algorithm
as shown in Tab. 4.1. We need to choose a planning horizon N = 6 for the
unconstrained case in order to get a similar performance of Alg. 4 compared
to the Alg. 3. This is related to the nominal closed loop results shown in
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Fig. 3.2, in which (for a special initial condition) we need a planning horizon
N = 6 in order to achieve the optimal asymptotic average performance.
Importantly note, that both algorithms achieve a better performance than the
robust optimal operation.

Compared to the asymptotic average performances of the nominal control
schemes applied in case of disturbances (Tab. 3.2), we have in case of Alg.
3 only a quarter of the cost within the same planning horizon N = 4. The
improvement under application of Alg. 4 for N = 6 is in the same range as
well. Interestingly, since we choose a different initial condition for the robust
setting and since we have tightened constraints, using the planning horizon
N = 4 already leads to unstable closed loop behavior of the nominal and
therefore also for the real system. Choosing N = 5 provides stable, but subop-
timal performance. As mentioned in the previous chapter, the computation
times for N = 6 are essentially worse compared to those using N = 4 in the
constraint terminal set and terminal cost case.

Therefore we conclude that the concept of the robust stage cost [4], ex-
tended to the periodic operation case yields significant performance improve-
ments for constrained and unconstrained underlying EMPC algorithms for
periodic operation.

Table 4.1: Comparison of Alg. 3 and Alg. 4 applied to the simple supply chain
model under disturbances after 4000 simulation steps.

Algorithm Planning hor. N Avg. Performance
Alg. 3 4 9.72
Alg. 4 4 →∞
Alg. 4 5 10.67
Alg. 4 6 9.85
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Figure 4.1: Simulation of the closed loop system with planning horizon N = 4
under application of Alg. 3.
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Figure 4.2: Closed loop results of the simple supply chain network using Alg.
4 and planning horizon N = 6.
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5 Application: Complex supply chain
network

5.1 Introduction

Typical supply chain networks consist of suppliers, manufacturers, a distribu-
tion network and customers. In Fig. 5.1, an example supply chain network
without auxiliary suppliers is shown. It consists of a supplier for one type of
good and network graph on which one truck distributes the goods to three
retail stores. Note that this model is essentially more complex than the simple
supply chain introduced in Sec. 1.3. Mainly because of the more complex
network structure which is particularly hard to handle within the upcoming
online optimization problem.

Despite simplifications, the model class which contains the supply chain
network (Fig. 5.1) and the resulting mixed integer problem represents the
most frequently used class of models and resulting optimization problems in
literature [17].

In most supply chain planning publications an open loop, finite time horizon
optimization is performed in order to minimize the overall cost. In more
recent publications, e.g. in [16] or [22], model predictive control concepts are
used in order to improve long term performance. However those approaches
are either heuristic or they are designed for tracking a reference orbit. In
both cases, it is not possible to state any performance guarantees. In [14]
unknown disturbances are explicitly taken into account by formulating a linear
stochastic optimization problem for performance improvement.

All of the afore mentioned approaches lack strict theoretical foundation
in terms of recursive feasibility, asymptotic average performance and conver-
gence properties with respect to the optimal orbit. To this end, in [21] a
strict economic model predictive control scheme for inventory management in
supply chains is presented, that provides the theoretical properties of recursive
feasibility, asymptotic average performance of the optimal steady state and
asymptotic convergent behavior to the optimal steady state. However only
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5 Application: Complex supply chain network

the case of optimal steady state without external unknown disturbances is
considered.

In this chapter we overcome the limitations of existing literature regarding
model predictive control and supply chain networks in terms of

• Verification of a given periodic orbit in terms of optimal operation of the
closed loop system

• Economic model predictive control, in case periodic operation is optimal

• Robustness and better closed loop performance under the presence of
disturbances.
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5 Application: Complex supply chain network

5.2 Model

Dynamics

Like in the introductory example (Sec. 1.3), we use the following notations:
xS,1 ∈ R represents the number of goods in the supplier production process,
xS,2 ∈ R the number of goods in the supplier storage, xT,P ∈ {0,1} describes
the truck position, xT,L ∈ R the number of goods which are carried by the
truck and xR,1,xR,2,xR,3 ∈ R the number of goods in the retailers storages.
As well as inputs, namely the truck navigation uT,P ∈ {0,1} and truck load
of goods uT,L ∈ R, supplier production request (number of goods) uS ∈ R
and external disturbance (number of goods) w ∈ W where w(k) = w∗ + ε
with ε ∼ Yε with probability distribution P (ε) that describes the costumer
demand at the retail store. We assume E[ε] = 0 from which follows that we
have E[w(k)] = w∗. The corresponding switched system dynamics is given as

xS,1(k + 1)
xS,2(k + 1)
xT,P (k + 1)
xT,L(k + 1)
xR,1(k + 1)
xR,2(k + 1)
xR,3(k + 1)


=



0 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


︸ ︷︷ ︸

=:A



xS,1(k)
xS,2(k)
xT,P (k)
xT,L(k)
xR,1(k)
xR,2(k)
xR,3(k)


︸ ︷︷ ︸

=:x(k)

+



0
0

fT,P (xT,P (k), uT,P (k))
0
0
0
0


︸ ︷︷ ︸

=:fG(x(k),u(k))

+Bσ(k)

[
uT,L(k)
uS(k)

]
︸ ︷︷ ︸

=:uB(k)

+w(k)

(5.1)

with states x(k), inputs u(k) = [uT,P (k),uT,L(k),uS(k)]> and nominal distur-
bance

w∗(k) = [0,0,0,0,− 1,− 1,− 1]> (5.2)
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5.2 Model

as well as unknown, uniformly distributed disturbances

w(k) ∈


w ∈ I7 s.t.



0
0
0
0
−2
−2
−2


≤ w ≤



0
0
0
0
−1
−1
−1




. (5.3)

The switched input matrix Bσ(k) is defined as

Bσ(k) ∈ {B0,B1,B2,B3} , B0 =



0 1
−1 0
0 0
1 0
0 0
0 0
0 0


, B1 =



0 1
0 0
0 0
1 0
−1 0
0 0
0 0


,

B2 =



0 1
0 0
0 0
1 0
0 0
−1 0
0 0


, B3 =



0 1
0 0
0 0
1 0
0 0
0 0
−1 0


,

together with the switching policy σ(k) := xT,P (k). The dynamics fG of the
truck are encoded in a Graph, see Fig. 5.1. The graph encodes the supply
network structure and the graph dynamics describe how the truck can travel.
In short we have dynamics of the form

x(k + 1) = Ax(k) +Bσ(k)uB(k) + fG(x(k),u(k)) + w(k) (5.4)
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5 Application: Complex supply chain network

with x ∈ X and u ∈ U. In addition with a ∈ R,a > 100 we have the following
state and input constraints

0 ≤ xS,1 ≤ a
0 ≤ xS,2 ≤ a
0 ≤ xT,L ≤ 30

−a ≤ xR ≤ a
−a ≤ xR ≤ a
−a ≤ xR ≤ a. (5.5)

Stage cost

The stage cost is similarly defined as in the case of the simple supply chain
example, introduced in Sec. 1.3.

1. The production and storage cost is defined by `S(x,u) := xS,1 + 0.5xS,2.

2. The cost for truck load and driving reads `T (x,u) := xT,L + uT,P .

3. For each retail store we have a storage cost for a positive number of
goods in the store. A larger demand than available goods (negative
number of goods), which results in unhappiness of the customers, is
modelled by a high cost. More precisely for the stores i = 1,2,3 we have

`R,i(x, u) :=

{
−10xR,i, xR,i < 0

xR,i, xR,i ≥ 0.
(5.6)

In summary we end up with a piece-wise defined linear stage cost, defined
on 9 disjoint subsets (i.e. xR,1 ≥ 0,xR,2 ≥ 0,xR,3 ≥ 0, or xR,1 < 0,xR,2 ≥
0,xR,3 ≥ 0). The stage cost is continuous and bounded on X× U.

5.3 Optimal operation

Nominal optimal periodic orbit

Again, we solve for the optimal periodic orbit as described in Rem. 1.2.2
approximately in terms of finite P using the dynamics (5.4), stage cost (5.6)
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5.3 Optimal operation

and the expected (nominal) disturbance w∗(k) = [0,0,0,0,− 1,− 1,− 1]T . We
obtain

P̄ = 4,

Π̄ =





12
0
0
0
1
2
3


,

 1
12
0



,





0
0
1
12
0
1
2


,

 1
−4
0



,





0
0
2
8
3
0
1


,

 1
−4
0



,





0
0
3
4
2
3
0


,

 1
−4
12





(5.7)

with average cost 1
4

∑3
k=0 `(x̄

p
k,ū

p
k) = 14.5 along the periodic orbit. For a

fixed time horizon, we can argument as in Sec. 2.5 that the optimal posi-
tion trajectory for the truck is given by (xT,P (tP ),xT,P (tP + 1),xT,P (tP +
2),xT,P (tP + 3)) = (0,1,2,3). In case of any other trajectory we would have
to store additional goods, either in the truck’s or in the retailer’s storage in
order to prevent negative retail store values because of missing supply by the
truck and the nominal demands at the retail stores. Because of the dynamic
constraints of the truck position, saving the ’truck is driving cost’ is always
higher than increasing the total number of goods in the supply chain in a
previous roundtrip of the truck. By fixing the truck’s trajectory, the P -step
system stage cost consists of 94 = 6561 different disjoint local subsets. By
using Cor. 2.4.5 we verify that (5.7) is strictly dissipative (in combination with
suboptimal operation for any other truck orbit and Rem. 2.2.6), and therefore
the system (5.4) is optimally operated at (5.7). Furthermore by Cor. 2.2.5 it
is suboptimally operated off that specific orbit.

Robust optimal periodic orbit

As in the example of the simple supply chain model in Sec. 4.9 we start
by introducing an auxiliary controller in order to construct the tube. We
can directly extend the auxiliary controller given in (4.21). Therefore define
eT := xT,L−zT,L, eR,1 := xR,1−zR,1, eR,2 := xR,2−zR,2, eR,3 := xR,3−zR,3
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5 Application: Complex supply chain network

and

φ(v,x,z) =


[vT,L − eT , vS ]>, xT,P = 0

[vT,L + eR,1, vS − eR,1]>, xT,P = 1

[vT,L + eR,2, vS − eR,2]>, xT,P = 2

[vT,L + eR,3, vS − eR,3]>, xT,P = 3.

(5.8)

We tighten the truck load constraints to 12 ≤ zT ≤ 30 and in addition we
restrict the truck position to follow the optimal orbit for four consecutive time
instances1. As the truck arrives at a retail store, it unloads the nominal amount
vT,L plus the amount of goods which is missing because of the unknown dis-
turbance eR. Since we tightened the nominal constraint set, we can guarantee
that worst-case demands over one period (12 items) can be handled. Also,
we trigger an additional production of items, at the same time as the truck
unloads at the retailer for disturbance compensation.

If the truck is at the supplier it loads the nominal amount of goods, plus the
amount of goods that are missing in the trucks storage because of disturbance
compensation at the previous time instance, when the truck was at the retailer
storage.

Application of 5.8 yields the RCI set

Ω =


x ∈ R7 s.t.



0
0
0
−12
−4
−4
−4


≤ x ≤



4
9
0
0
0
0
0




. (5.9)

Note that the RCI set of xS,1 no longer empty as it was the case in (4.22). The
corresponding reduced nominal feasible set X̄ = X	 Ω is given by

0 ≤ xS,1 ≤ a, 0 ≤ xS,2 ≤ a
12 ≤ xT,L ≤ 30, −a ≤ xR,1 ≤ a
−a ≤ xR,2 ≤ a, −a ≤ xR,3 ≤ a (5.10)

1Again, this is an extension to the concept in the previous chapter, since we provide a tightened
constraint set for the 4-step graph state.
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5.3 Optimal operation

as well as constraints of the trucks position to the optimal periodic orbit (5.7).

Using the afore derived RCI set, the resulting integrated stage cost function
gets very tedious. This is due to the fact, that we have to distinguish the 9
different cases of the original stage cost function. For each case, there will be
7 nested integrals by leveraging Fubinis Theorem [9]. In Addition for each
integral over xR,i, i = 1,2,3 we have to distuinguish three different cases, as
we did in (4.23). Therefore, explicely writing down the integrated stage cost
function does not make much sense2. Solving (4.5) yields

P̄ = 4,

Π̄ ={



12
0
0
12

3.77
4.77
5.77


,

 1
12
0



,





0
0
1
24

2.77
3.77
4.77


,

 1
−4
0



,





0
0
2
20

5.77
2.77
3.77


,

 1
−4
0



,





0
0
3
16

4.77
5.77
2.77


,

 1
−4
12




}. (5.11)

Since we have in (5.11) exactly the same inputs as in (5.7), the integrated
stage cost function simply yields a shift of the optimal trajectory in the retail
store values. This is no suprise, as the cost increases dramatically, as soon
as we have negative retail store values. Like it was the case in the simple
supply chain example in Sec. 4.9, it is no longer possible to exactly verify strict
dissipativity. Again, we verified strict dissipativity experimentally by many
(10000) uniformly random chosen starting points for the optimization problem
(4.5). Therefore we used the Matlab Global Optimization Toolbox, using a
local, primal dual optimization algorithm with several restarts. For each run,

2We recommend the interested reader to have a closer look at the implementation.
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5 Application: Complex supply chain network

we obtained the same optimizer and therefore we conclude (experimental)
strict dissipativity by Thm. 2.3.5 and the discussion on the truck position orbit
w.r.t. (5.7).

5.4 Nominal economic model predictive control

In this section, the economic model predictive control scheme for periodic
operation (Sec. 3), using a terminal set and a terminal cost is compared
against the unconstrained3 scheme from [18].

Economic MPC with terminal set and cost

For the supply chain example (Fig. 5.1) we use the following terminal set

X̄f = Π̃X (5.12)

with Π̃X the set of shifted optimal orbits (2.1), see Def. 1.2.5. As a terminal
controller we use the optimal periodic orbit input trajectory ΠU, starting from
the corresponding element with respect to the truck position. It follows that
(3.2.1), 3 is fulfilled with equality, independent of the choice of V̄f .

In Fig. 5.2 we show a closed loop trajectory without any unknown distur-
bances and a planning horizon N = 8. Given that special initial condition,
an interesting effect is, that some of the goods of the second retail store are
distributed to the third retail store. This is because, the second retail store
has too many goods in storage with respect to the nominal demand rate by
customers. Due to the limitation of the trucks storage, the first retail store
needs two periods, before converging to the optimal periodic.

Fig. 5.3 shows the closed loop trajectory, starting with the same configura-
tion but with unknown external disturbances (5.3). Again, as in the simple
supply chain example, the retail stores experience a higher demand of goods
by the customers compared to the number of available goods in the storage.

3In literature, MPC without terminal cost and terminal constraints is often referred to as uncon-
straint MPC.
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5.4 Nominal economic model predictive control

Economic MPC without terminal set and cost

Strictly speaking, in order to apply Alg. 2 we must verify the tedious controlla-
bility assumptions Ass. 3.6.1 and Ass. 3.6.2. However, due to the increased
size of the corresponding P -step system (24 state variables and 8 inputs, when
assuming an optimal truck position trajectory), it is no longer possible to use
the Multi parametric toolbox [12] for reachability analysis around the opti-
mal orbit because of numerical problems. As a conjecture we think, that the
controllability assumptions are still fulfilled. Using an appropriate planning
horizon, the results which we introduce later also suggest that this conjec-
ture is true, while the numerical or strict verification is left as an open problem.

The closed loop application of Alg. 2 is shown in Fig. 5.4. We need twice as
much time for convergence within the same planning horizon. As in the case
of the simple supply chain example, we do not reach the optimal orbit for the
specific initial condition at hand. The third retail store has a constant offset of
’−1’ number of goods compared to the optimal orbit. Since we have to solve a
mixed integer problem, it was not possible to increase the planning horizon
in case of Alg. 2 further in order to investigate convergence to the optimal
periodic orbit in terms of the planning horizon.

In Fig. 5.5 a sample of the closed loop application of Alg. 2 under the
presence of unknown, additional disturbances is illustrated.

Comparison

We compare both, Alg. 1 and Alg. 2 also under the presence of disturbances in
Tab. 5.1. In contrast to the case of the simple supply chain model (Sec. 1.3),
there is a significant performance difference. Using the same planning horizon,
our proposed method outperforms the unconstraint strategy. Using shorter
planning horizons, as expected, the unconstraint algorithms performance
gets worse but remains stable. Importantly, note that due to computation
times, we could not apply larger planning horizons than N = 8 because of
the exponentially increasing computation time of the corresponding mixed
integer problem.
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5.5 Robust economic model predictive control

Similar to the nominal case, we choose the terminal set

X̄f = Π̃X, (5.13)

but with (5.11) instead of (5.7). We tighten the state constraints according to
(5.10) 4. Using the auxiliary control law (5.8) and the induced RCI set (5.9)
we implement the corresponding integrated stage cost function.

In Fig. 5.6 and Fig. 5.7 are samples of the closed loop behavior using Alg.
3 and Alg. 4 respectively. The average performance is compared in Tab. 5.2.
Most importantly, note the instability of Alg. 4. This is due to a randomly
different initial condition compared to the previous section and the tightened
constraint set. This is a notable drawback of the MPC scheme without terminal
constraints [18] because, we will never know for sure, for which planning
horizon we can guarantee asymptotic stability. However, since we decided
to fix the trucks position trajectory to the optimal orbit we have a convex
optimization problem instead of the mixed integer problem in the previous
sections. Therefore we can increase the planning horizon. For N = 10 we
get similar performance between Alg. 3 and Alg. 4, while having comparable
computation times. We can conclude, that if we choose the planning horizon
appropriately, we get similar performance in the robust setting, due to a sim-
plified problem structure by fixing the trucks trajectory.

Furthermore, note that we have at least halved the average closed loop
cost using the robust MPC algorithms, proposed in this work. This essential
performance improvement can be pulled down to the concept of the integrated

4The trucks position is restricted to the optimal period orbit.

Table 5.1: Comparison of Alg. 1 and Alg. 2 applied to the supply chain model
(Fig. 5.1) under disturbances after 400 simulation steps.

Algorithm Planning hor. N Avg. Performance
Alg. 1 8 62.98
Alg. 2 6 124.50
Alg. 2 7 102.48
Alg. 2 8 84.46
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5.5 Robust economic model predictive control

stage cost function, which we adapted from [4]. The retail store’s storage
is not at the nominal optimum, but slightly above in order to enable the
compensation of unknown customer demands.

Table 5.2: Comparison of Alg. 3 and Alg. 4 applied to the supply chain model
(Fig. 5.1) under disturbances after 400 simulation steps.

Algorithm Planning hor. N Avg. Performance
Alg. 3 8 31.48
Alg. 4 8 →∞
Alg. 4 9 40.27
Alg. 4 10 33.35
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Figure 5.2: Closed loop results of the simple supply chain network using Alg.
1 and planning horizon N = 8 without unknown disturbances.
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Figure 5.3: Closed loop results of the simple supply chain network using Alg.
1 and planning horizon N = 8 with unknown disturbances.
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Figure 5.4: Closed loop results of the simple supply chain network using Alg.
2 and planning horizon N = 8 without unknown disturbances.
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Figure 5.5: Closed loop results of the simple supply chain network using Alg.
2 and planning horizon N = 8 with unknown disturbances.
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Figure 5.6: Closed loop sample of the simple supply chain network using Alg.
3 and planning horizon N = 8 with unknown disturbances.
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Figure 5.7: Closed loop sample of the simple supply chain network using Alg.
4 and planning horizon N = 8 with unknown disturbances.
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6 Conclusion

In this work we studied

1. An explicit linear programming formulation in order to verify strict
dissipativity with respect to a given periodic orbit in case of linear
time varying systems with piece-wise convex cost. In the convex case
we further established the necessary and sufficient relation between
uniqueness of an optimal periodic orbit and strict dissipativity.

2. A novel economic model predictive control scheme for optimal periodic
operation using a terminal region and terminal cost functional. We
leveraged existing results from the steady state case to enable a more in-
tuitive (and possibly easier) control design process compared to existing
literature. We strictly proved interesting properties, namely recursive
feasibility, asymptotic average performance that is no worse than that
of the systems optimal periodic orbit, and asymptotic stability of the
systems optimal periodic orbit.

3. A robust economic model predictive control scheme in case periodic
operation is optimal. To this end we used the concept of integrated stage
cost functionals [4].

We demonstrated the methods by using a supply chain network with graph
constraints, resulting in a mixed integer programming problem. The problem
type is representative for frequently arising problems in the operational supply
chain management literature. By comparing our method conceptually to
existing methods it turned out that the design process is less involved as in [24],
but more complicated as the terminal constraint free method [18]. Caused
by the tedious problem structure, we could guarantee optimal asymptotic
average performance and asymptotic stability with respect to the optimal
(robust) periodic orbit with our method only.
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