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Abstract— The vision of autonomous driving is piecewise
becoming reality. Still the problem of executing the driving task
in a safe and comfortable way in all possible environments, for
instance highway, city or rural road scenarios is a challenging
task. In this paper we present a novel approach to planning
trajectories for autonomous vehicles. Hereby we focus on the
problem of planning a trajectory, given a specific behavior
option, e.g. merging into a specific gap at a highway entrance
or a roundabout. Therefore we explicitly take arbitrary road
geometry and prediction information of other traffic partici-
pants into account.
We extend former contributions in this field by providing a
flexible problem description and a trajectory planner without
specialization to distinct classes of maneuvers beforehand. Using
a carefully chosen representation of the dynamic free space,
the method is capable of considering multiple lanes including
the predicted dynamics of other traffic participants, while
being real-time capable at the same time. The combination of
those properties in one general planning method represents the
novelty of the proposed method. We demonstrate the capability
of our algorithm to plan safe trajectories in simulation and in
real traffic in real-time.

I. INTRODUCTION

Autonomous driving is becoming reality. First steps can
be seen in partly automated driving functions which can
take over control in well-defined situations like parking,
traffic jams, and highway scenarios. These (combinations of)
driver assistance systems are still below of the capabilities
of human drivers. Experienced human drivers understand the
traffic scene which can be interpreted as the extraction of a
feature vector f . Based on that they predict other vehicles
V by estimating their probable future position pV(x, y, t|f)
and use this information as constraints in combination with
the static environment for decision making and trajectory-
planning. In contrast to former contributions, we strongly
believe that a trajectory planner should not make assumptions
about the way other vehicles will continue their trajectory in
the future. It has to be independent of upstream software
modules and only has to be accessible using a defined
geometric interface. According to this point of view our
contribution covers three main aspects:
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Our first contribution is an interface between scene predic-
tions, higher level maneuver decisions and our trajectory
planner based on our formal problem formulation. We want
to emphasize that by construction the interface provides not
only constraints but a heuristic for trajectory planning which
is independent of an underlying trajectory planning method.
Our second contribution covers an increased flexibility of
trajectory shapes. Many sampling-based approaches lack
flexibility when it comes to the shape of planned trajectories
due to their limitation to a fixed number of motion primitives.
Even simple scenes which require a two-step strategy, like
catching up to a gap and performing a lane-change after-
wards, are not directly solvable using these approaches. The
third contribution is that we provide a method for algebraic
optimal sampling of trajectories based on sampled trajectory
points, which allows us to perform real time computations
without additional effort, e.g. parallelization. More formally,
given a selected behavior (e.g. a chosen gap to merge
into) we formulate the trajectory planning problem as the
minimization of a cost function J to compute an optimal
vehicle state x∗(t), and control function u∗(t) over time1:

u∗(t), x∗(t) = arg minu,x J(Tf ,x(t),u(t)) (1)
s.t. ẋ(t) = f(x(t),u(t)) (2)

u(t) ∈ U (3)
x(t) ∈ X (4)

y(t) ∈ Y(t) (5)
t ∈ [0, Tf ] (6)

where u(t) is the control input of the vehicle at a time t,
x(t) the vehicle state, and y(t) the vehicle position coor-
dinates. We use a non-linear bicycle model as a reasonable
simplification of the dynamical behavior of a real vehicle
for trajectory planning purposes. Input and state constraints
like maximum acceleration and velocity are incorporated, see
Sec. V-A. For the definition of our cost function, see Sec. V-
B. Most important, as an additional constraint, the resulting
trajectory y(t) has to lie within the local constraints Y(t)
(e.g. the road geometry, dynamic-free-space) for all time-
points t up to the planning time-horizon Tf , see Sec. IV for
the geometric description and Sec. V-B for the incorporation
in our sampling strategy. By efficient optimal sampling
(Sec. V-C) we deterministically tackle the highly non-linear
optimization problem yielded by the time-varying feasible
set for the output-trajectory y(t) in real time.

1in the latter we often neglect the argument t, for example we write x(t)
as x.



Fig. 1. Visualisation of the three dimensional planning problem. The task
is to plan a safe, comfortable, and dynamic feasible trajectory y(t) for
the green ego vehicle, given prediction information of other vehicles and
obstacles.

Fig. 2. We destinguish between three consecutive planning steps, in the first
one a concrete behavior is chosen, e.g. to drive into a specific traffic gap.
In the second a specific trajectory which is fullfilling the behavior descision
is selected according to a cost-function using sampling techniques. In the
third and last step the selected trajectory can be optimized locally using
the assumption, that the approximate location of the minima of the cost
function was determined in the previous step.

Our paper is structured as follows. In Sec. II we give the
reader an overview of the current state-of-the-art methods for
trajectory planning for autonomous vehicles. As a starting-
point to motivate the planning problem, we shortly describe
the way the occupied space can be computed as a function
of t in Sec. III. In Sec. IV we describe the data repre-
sentation used for the dynamic free-space, and accordingly
the interface definition for our proposed trajectory planning
algorithm. In Sec. V the way safe points can be sampled
using the free-space information, and flexible trajectories can
be generated regarding the former mentioned constraints will
be described. In Sec. VI we show the capabilities of the
proposed approach in simulated and real-world scenarios and
conclude with Sec. VII.

II. RELATED WORK

Several methods for trajectory planning in dynamic en-
vironments have been proposed in the literature. In [1] a
sampling-based method in a curvilinear coordinate system
is described. The proposed method distinguishes between
a finite set of maneuver options. Given those maneuvers,
a fixed end-state, and the constraint to traverse exactly the
sampled points, the author describes a method to plan jerk-
optimal trajectories considering multiple lanes and traffic
participants.

Attacking the higher-level problem as the scope of this
work, the method proposed in [2] is important for our
presented work. It describes a solution for the combinato-
rial problem of which specific maneuver variant should be
chosen. For example, in the case of an overtaking maneuver
and traffic in the neighboring lane, the approach is capable
of selecting the best gap for the maneuver which should be
executed. In the following we call this discrete selection of

maneuver-variants behavior-planning, see also Fig. 2. A solu-
tion for the underlying problem of planning a concrete trajec-
tory is described in [3]. The trajectory is planned in a global
coordinate system using Sequential Quadratic Programming.
This technique is able to find a local optimal trajectory
along a defined centerline given a cost functional, which
penalizes lateral offsets to the centerline, velocity offsets to a
desired velocity, and high values of jerk and acceleration. The
applicability of the method was proven on the Bertha Benz
Memorial Route. The main drawback of this approach in our
opinion relates to all approaches that handle the planning
problem as a local optimization problem. More complex
cost functions and constraints result in a real-time intractable
computational effort for trajectory generation. Besides those
approaches closely related to the work presented in this
paper, [4] presents an approach using RRTs for dynamic
motion planning in the context of autonomous driving, where
the concept was proven to be feasible in the 2007 DARPA
Urban challenge. Using a spatio-temporal-lattice [5] presents
an approach for trajectory planning. To deal with the size of
the lattice, and to deliver results in real-time, the use of a
GPU is proposed, which significantly reduced the planning
latency. While the computational effort, and the extensive
use of memory is a drawback of this approach, the main
advantage can be seen in the fact that behavior planning or
the choice of maneuver variants is implicitly solved in this
approach. As an orthogonal approach [6] presents a method
where flexible trajectories are generated by the piecewise
concatenation of motion primitives for the application of a
small aerobatic helicopter.

The contribution of our work can be seen in the com-
bination of the ideas of [1], [3], [6] and [7]. We also use a
curvilinear system for sampling, while extending the areas of
[1] by avoiding sampling in occupied regions. We then trans-
form the sampled points back to the Cartesian coordinate
system for trajectory generation. This guarantees driveability
and jerk optimality for the generated trajectories, even when
a real road contains discontinuities and curvature. By using
a composite trajectory we can also improve the flexibility of
the trajectory without using an overall optimization approach.
Additionally our method also produces dynamically feasible
results for different kinds of maneuvers, like turning at
intersections, lane-changing, roundabouts, etc. because we
use a longitudinal and lateral coupled model, and no path-
velocity decomposition is used for trajectory generation. To
generate a human-like driving behavior, we also extend the
idea of [3] to penalize offsets from the center of the lane. We
reformulate the idea by providing the borders of a lane as a
hard constraint. Additionally the center of the lane has to be
reached locally at the end of the trajectory, which enables us
to realize a lateral control with extended foresight.

III. ESTIMATION OF OCCUPANCIES

A. Coordinate systems

The key to planning is scene-understanding. This under-
standing is hard to achieve in a Cartesian coordinate system.
Instead the relevance of other traffic participants to the own



(a) Critical situation for the green ego vehicle.
How can a safe trajectory in this situation be
planned?

(b) Transformation of traffic scene into curvilinear co-
ordinate system using Γ, where the s-axis denotes the
distance along the curvature of the road, and the d-axis
the orthoghonal axis, compare also Fig. 3a.

(c) By using prediction
information the occupied
space can be visualized
over the time t, see also
Fig. 3b.

Fig. 3. For task of planning trajectories, we transform the traffic scene in a curvilinear coordinate system, predict other vehicles in a probabilistic fashion,
and model their future positions by determining the confidence bounds for their prediction information, which is a probability density function.

behavior is determined by their current and future lane-
assignment. For this reason we use a curvilinear coordinate
system along the curvature of the road, where we denote the
longitudinal dimension along the road s and the orthogonal
direction d. We rely on having a function Γ which is able
to transform between the vehicle coordinate system and the
curvilinear system, see also Fig. 3a and Fig. 3b. The function
for the transformation back to the cartesian coordinate system
is called Γ−1 respectively:

Psd = Γ(Pxy) and Pxy = Γ−1(Psd)

For a short survey on how to compute this transformation
see [1].

B. Prediction information

To compute the prediction information of other traffic
participants, we rely on previous work [8], [9], [10]. The
proposed approach is a two-step process. In the first step
the probability of each maneuver-class which can be ex-
ecuted by other traffic participants is estimated. Because
all our prediction-experiments were conducted on highway
scenarios, we only distinguish between the three maneuvers
lane-following Flw, lane-changing to the left LcL, and lane
changing to the right LcR. For rural roads, intersections, and
roundabouts more maneuver classes would be necessary. Us-
ing a Naive Bayesian approach, the probability of a vehicle
with the measured feature vector f = {f1, f2...fn} executing
a maneuver m ∈ {Flw,LcL,LcR} can be computed by:

pm = p(m|f) ∝ p(f |m)p(m), (7)

p(f |m) =

n∏
i

p(fi|m). (8)

Alternatively the probability pm of a maneuver m can be
computed by other machine learning techniques, see [10],
[11]. Using the probability estimates of the executed maneu-
ver class, the future positions are estimated using regression
techniques. Because different drivers act in a different man-
ner, we propose an algorithm to estimate a probability density
of future positions X instead of a deterministic position
estimate. For this regression problem we propose the use
of a Gaussian Mixture Regression algorithm. The learning

process in this case is the estimation of a Gaussian Mixture
Model over the in- and output-dimensions with a distribution:

p(X) =

n∑
k=1

wkN (µk,Σk, X) (9)

where wk is the weight, µk the mean, and Σk the covariance
matrix of each of the n Gaussian components of the mixture.
The computation of the outputs, which are the parameters
of a Gaussian Mixture Distribution in this case, is solved
by computing the conditional distribution, where the mean
µk,o|i of a component k with the the output dimensions o
given the input dimensions i and can be computed by

µk,o|i = µk,o + Σk,o,iΣ
−1
k,i(I − µk,i). (10)

The corresponding covaricance matrix is computed by

Σk,o|i = Σk,o − Σk,o,iΣ
−1
k,iΣk,i,o, (11)

and the conditional weights by

wk|i =
wkp(I|N (µk,Σk))∑k
n=1 wnp(I|N (µn,Σn))

. (12)

We are using five regression models to solve the problem
of position prediction of other traffic participants in highway
scenarios. Two of those models are predicting the longitudi-
nal behavior, where the first is taking into account the vehicle
in front, and the second is applied if no preceding vehicle
is measured by our sensors, see [9]. The three remaining
models are estimating the lateral position of the maneuvers
Flw, LcL, and LcR, which are then combined using pm,
see [10] for a more detailed description. To compute the
deterministic occupancies of a vehicle as a function of
t, we compute the confidence bounds separately for the
longitudinal and lateral probability density function, see [12]
for the algorithmic description to compute those bounds.
Note that estimates of those confidence bounds can also be
acquired by other prediction techniques, see [9] for a more
detailed survey on published methods.

IV. DEFINITION OF AN INTERFACE FOR THE TRAJECTORY
PLANNER

For planning trajectories we use the prediction information
computed of a traffic scene, see Fig. 3b for an example.



(a) By inverting the occupancies, see Fig.
3c, we can derive safe spaces which are lo-
cally and temporal adjacent. We call those
areas Action-Spaces A.

(b) A sectional drawing in the s − d plane shows
the time dependend occupancies (dashed) and the
non moving, time constant occupancies (in our case
a contruction yard), compare also to Fig. 3c.

(c) This slightly simplified class-diagram shows the
interface of the trajectory planner.

Fig. 4. Sectional drawings of the three-dimensional planning problem, its geometric reprensentation and the resulting modelling of the interface to the
trajectory planning algorithm.

Hereby it is essential to provide sufficient constraints for
each maneuver on the one hand without losing generality in
the interface definition on the other hand. By representing
the scene in a sectional drawing of t-s we can see the
(future) occupancies of each lane in Fig. 3c. In Fig. 4b
the corresponding occupancies are visualized in a sectional
drawing in the s-d dimension. By inverting the occupancies
in Fig. 3c we can visualize the safe driving space for each
lane, see Fig. 4a. As can be seen in the example, there
is the need for the green ego vehicle to change lanes, to
avoid crashing into the construction zone C. We decompose
the given scene into three areas, called action-spaces in
the following. The first action-space A1 is defined by the
collision-free space in the starting lane. The third A3 is the
collision-free space in the second, orange lane. We connect
both of these action spaces by Ã, which is the space that is
safe in both lanes at the same time. More formally we define
Ã as the connection action-space generated by action-space
Ai and Ai+1 if for all Points P̃ ∈ Ã the following holds
true:(

sP̃
dP̃

)
∈ Ai and

(
sP̃
dP̃

)
∈ Ai+1 and (13)

dp ∈ Ds,t with DÃs,t = DAi
s,t ∩ D

Ai+1

s,t s.t. (14)

DAs,t =
{
dPs,t |(Pst ∈ A) ∧ (sPs,t = s) ∧ (tPs,t = t)

}
(15)

and ∀P̃ : DAi
sP̃ ,tP̃

∩ DAi+1

sP̃ ,tP̃
6= {} (16)

which means figuratively speaking that the connecting
action-space Ã is the union of Ai and Ai+1 in the s-d plane
at all points where they intersect in the s-t and touch in the
s-d-plane. The limits of an Action Space A are defined by
the time-point tmin where it is the first time when it can be
entered without causing a collision. The latest time-point for
leaving it can be seen in tmax. The extreme values in the
d and s dimension can be interpreted by analogy to the t
dimension. We define the geometric body of an action-space
A by a polyline called the upper-bound bu and a lower-
bound bl, each consisting of points P , see also Fig. 4c. In
addition, to solve the planning problem we define a target
state Ce and a start-state C0. The start-state consists of the
position in the curvilinear coordinate system and the initial

values of the bicycle-model, the longitudinal velocity v0, the
the longitudinal acceleration a0, the orientation relative to
the road measured by the angle Ψ and the steering angle δ.
To generate human-like behavior we model the target state
for our trajectory planning problem as a polyline represented
by se and de providing curvature c0,e and orientation Ψ0,e

at each point of it. Practically this allows us to generate
a trajectory ending smooth on an arbitrary curved and
oriented road geometry. Additionally a target speed ve and
acceleration ae should be reached at the end of the trajectory.
As the last part of the interface we need a transformation
class γ, which implements the transformations between the
curvilinear and Cartesian coordinate system as described in
Sec. III-A.

V. TRAJECTORY PLANNING

In this section we aim to solve (1) approximately2. For-
mally (1) is a kinodynamic trajectory planning problem as
described in [13]. We want to emphasize that based on
prediction information, we have to deal with time-dependent
constraints. The main challenge is to solve (1) in real time.
As described in Sec. I, the plan of attack is as follows:

• Introduction of the physical model (Sec. V-A).
• In Sec. V-B we describe how to generate a sampling set.

Each of those samples consists of a tuple of meaningful
output trajectory points, that the trajectory has to pass
through. Those Samples can be seen as time-landmark
tuples, guiding the vehicle through Y(t,y(t)) (5).

• We then focus in Sec. V-C on a method for algebraic,
quadratic jerk-optimal trajectory generation by neglect-
ing inequality constraints of the system dynamics and
output constraints. The resulting output trajectory must
hit the time-landmark tuples described above.

• Until this stage we approximated the output inequality
constraints by sampling and fully neglected the state
and input constraints. In the last step (Sec. V-D) we
therefore filter infeasible trajectory samples.

2Note that without constraint (5) we would have a classical non-linear
open loop optimal control problem.



A. Vehicle model

We assume that complex vehicle dynamics will be ad-
dressed by a lower-level controller. Nevertheless the trajec-
tory planner must provide a trajectory that is roughly drivable
by the car. This means that kinematic as well as dynamics
and input/state constraints need to be satisfied. Therefore we
use the bicycle model for trajectory planning, which is given
by

ẋ(t) =


a(t)

cos(Ψ(t))v(t)
sin(Ψ(t))v(t)

1
L tan(δ(t))v(t)


︸ ︷︷ ︸

f(x,u)

(17)

where

x(t) = [v(t), x(t), y(t),Ψ(t)]
T
,u(t) = [a(t), δ(t)]

T (18)
and y(t) = [x(t), y(t)]︸ ︷︷ ︸

h(x)

as depicted in Fig. 5a.
Furthermore the system (17), (18) has physical input (3)

and state constraints (4) like maximum velocity or accelera-
tion. We just assume U and X to be arbitrary, but time- and
state- independent sets.

B. Efficient trajectory sampling

We describe each trajectory sample, indexed by m,
uniquely with an output trajectory point tuple

T (m) = {y(m)
1 ,y

(m)
2 , ..,y

(m)
i , ..,y

(m)
N }, (19)

s.t. y(m)
1 = h(x0). (20)

Here, x0 = C0 is the vehicle state as we start planning and
therefore ensures consistency with the current vehicle state
for each sample, see Fig. 4c. Efficiency in our context means
that we want to come up with sparse trajectory samples in
the end with high feasibility rate w.r.t. constraints (2)-(5). For
generation of T (m) first consider the action-space sequence3

Ai, i = 1, 2, .., N , visualized in Fig. 4a and Fig. 4b. Observe
that the final output trajectory we want to generate for each
sample m, defined as

y(m)(t) = [x(m)(t), y(m)(t)]T , (21)

has to pass through all intersections, i.e.

∃ti, i = 1, 2, ..N − 1 : y(m)(ti) ∩ ĀXY,i 6= ∅ (22)

where ĀXY,i denotes the i-th intersected action space

ĀXY,i = AXY,i ∩ AXY,i+1, i = 1, 2, .., N − 1, (23)

represented in XY coordinates. Pictorially speaking the in-
tersections (23) are time-dependent gates we must traverse.
Therefore our sampling heuristic is to first discretize the

3Since we consider only single trajectory generation requests we will
simply write A instead of A(k).

intersected action spaces ĀXY,i (Fig. 5b) in order to generate
output trajectory point candidates:

TP(m)
i (p, q, r) =

t
(m)
i,p

s
(m)
i,q

d
(m)
i,r

 =

 tmin + p∆t

smin + q∆s

dmin + r∆d

 (24)

where

∆t = (tmax − tmin)/Nt, (25)
∆s = (smax − smin)/Ns, (26)
∆d = (dmax − dmin)/Nd (27)

according to Fig. 4c. Nt, Ns, Nd define the discretization
resolution. If we write in the following t(m)

i instead of t(m)
i,p

we mean an arbitrary point w.r.t. p - same for s(m)
i,q and d(m)

i,r .
We generate a sample (19) by choosing one trajectory point
in each intersected action space. By taking every possible
combination we get the tuples (19). Note that pruning can
be done. For example in order to get from TP(m)

i to TP(m)
i+1

we have that t(m)
i,p ≤ t

(m)
i+1 and s

(m)
i ≤ s

(m)
i+1 . More complex

pruning strategies are also possible like rough maximum
dynamics estimates.

C. Optimal output trajectory generation based on differen-
tial flatness

The underlying idea is to construct an output trajectory
(21) that fulfills (22) such that this output trajectory is com-
patible with the bicycle model defined in Sec. V-A. Therefore
we use the fact that the bicycle model is differentially flat
w.r.t. the outputs x(t) and y(t). See [14] for more details.
In short, if a system has the property of being differentially
flat, then there exists a unique transformation between the
so-called differential flat outputs z and its derivatives and
the system states x and inputs u, see Fig. 5c. In the case
of the bicycle model we have z = y. This means that once
we know an output trajectory we can calculate the system
states and inputs. And vice versa: we can impose constraints
on the output trajectory and its derivatives, for example at
t = 0, such that the output trajectory corresponds to certain
vehicle states and inputs.

By differentiating the so-called flat outputs x(t), y(t) twice
we get the mapping from the inputs u and the states x to
these derivatives

Φx :

(
x(t)
u(t)

)
→ zx(t) : (28)x(t)

ẋ(t)
ẍ(t)


︸ ︷︷ ︸

zx(t)

=

 x(t)
cos(Ψ(t))v(t)

cos(Ψ(t))a(t)− sin(Ψ(t)) 1
L tan(δ(t))v(t)2


︸ ︷︷ ︸

Φx(x(t),u(t))

,

Φy :

(
x(t)
u(t)

)
→ zy(t) : (29)y(t)

ẏ(t)
ÿ(t)


︸ ︷︷ ︸

zy(t)

=

 y(t)
sin(Ψ(t))v(t)

sin(Ψ(t))a(t) + cos(Ψ(t)) 1
L tan(δ(t))v(t)2


︸ ︷︷ ︸

Φy(x(t),u(t))

.
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(a) Bicycle model and coordinate
system. x and y define coordinates
of the center rear axis. Ψ is the
angle w.r.t. an absolute coordinate
frame and δ is defined as the ack-
erman angle.
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(b) Concept of arbitrary action
spaces (for simplicity just rectan-
gular in s-t) overlapping from first
(blue) to last (green) action space.
Shaded areas depict intersected ac-
tion spaces Āi including trajectory
points.

(c) Flat transformation. It enables
to transform between (flat) output
trajectory and state-/input trajectory.
This is used in order to solve the
trajectory planning problem with ba-
sis functions for the (flat) outputs
between trajectory points.

t

s

(d) Visualization of trajectory sam-
ples, projected on s-t for simplicity.
All the trajectories are generated us-
ing the differential flatness property
in combination with jerk optimal ba-
sis functions.

Fig. 5. Basic ingredients of trajectory planning. In Fig. 5a the bicycle model, described in Sec. V-A is shown. Followed by Fig. 5b related to Sec. V-B
and Fig. 5c, Fig. 5d according to Sec. V-C.

The algebraic transformation (28) and (29) can be (locally)
inverted to

Φ−1 :

(
zx(t)
zy(t)

)
→
(
x(t)
u(t)

)
: (30)

v(t)
x(t)
y(t)
Ψ(t)
a(t)
δ(t)

 =



zx,2(t)
cos[tan−1(zy,2(t)/zx,2(t))]

zx,1(t)
zy,1(t)

tan−1(zy,2(t)/zx,2(t))
Φ−1
a (.)

Φ−1
δ (.)


︸ ︷︷ ︸

Φ−1([zx(t),zy(t)]T )

. (31)

where δ(t) = Φ−1
δ (.) and a(t) = Φ−1

a (.) are

tan
(
Φ−1
δ (.)

)
=

zy,3(t)− tan(Φ−1
Ψ (.))zx,3(t)

Φ−1
v (.)

2
(1/L)(tan(Φ−1

Ψ (.)) sin(Φ−1
Ψ (.)) + cos(Φ−1

Ψ (.))
(32)

Φ−1
a (.) =

zx,3(t) + sin(Φ−1
Ψ (.))(1/L) tan(Φ−1

δ (.))Φ−1
v (.)

2

cos(Φ−1
Ψ (.))

(33)

and Φ−1
v and Φ−1

Ψ are given in rows one and four of eq.
(31). The inverse transformation (31) only holds locally for

v(t) 6= 0 ∧Ψ(t), δ(t) ∈ (−π/2, π/2). (34)

We treat this as special cases in the implementation. Equa-
tions (28) and (29) allow us to verify state and input
conditions on the output trajectory. Once an output trajectory
is generated we can use equation (31) to calculate (transform)
corresponding state and input trajectories.
In order to generate a trajectory for a sample TP(m), we split
the output trajectory (21) into segments connecting TP(m)

i

and TP(m)
i+1 . Consequently according to (21) we have

y
(m)
i (t) =



y
(m)
1 (t), t ∈ [t

(m)
1 , t

(m)
2 ]

:

y
(m)
i (t), t ∈ [t

(m)
i , t

(m)
i+1 ]

:

y
(m)
N−1(t), t ∈ [t

(m)
N−1, t

(m)
N ].

(35)

For yi(t)(m) we introduce a trajectory piece

y
(m)
i (t) =

(
x

(m)
i (t)

y
(m)
i (t)

)
=

(
θ(t)TG

(m)
i

θ(t)TH
(m)
i

)
∈ C2 (36)

based on a basis function θ(t) with coefficients G(m)
i and

H
(m)
i . In order to impose the constraints given by each

output trajectory sample we have

x
(m)
1 (0)

ẋ
(m)
1 (0)

ẍ
(m)
1 (0)

 = Φx(x0,u0),

x
(m)
N−1(t

(m)
N−1)

ẋ
(m)
N−1(t

(m)
N−1)

ẍ
(m)
N−1(t

(m)
N−1)

 = Φx(xT ,uT ),

(37)y
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ẏ
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ÿ
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 = Φy(x0,u0),

y
(m)
N−1(t

(m)
N−1)

ẏ
(m)
N−1(t

(m)
N−1)

ÿ
(m)
N−1(t

(m)
N−1)

 = Φy(xT ,uT )

(38)



for the start and end constraints of the whole trajectory and

(39)

y
(m)
i (t

(m)
i ) = Γ−1(s

(m)
i , d

(m)
i ), ∀i = 2, 3, .., N − 1,

(40)

y
(m)
i (t

(m)
i+1) = Γ−1(s

(m)
i+1 , d

(m)
i+1,p), ∀i = 1, 2, .., N − 2,

(41)

ẏ
(m)
i (t

(m)
i+1) = ẏ

(m)
i+1 (t

(m)
i+1), ∀i = 1, 2, .., N − 2

(42)

ÿ
(m)
i (t

(m)
i+1) = ÿ

(m)
i+1 (t

(m)
i+1), ∀i = 1, 2, .., N − 2,

(43)
...
y (m)
i (t

(m)
i+1) =

...
y (m)
i+1(t

(m)
i+1), ∀i = 1, 2, .., N − 2.

(44)

Equations (37) and (38) impose physical vehicle start and
ending constraints on the output trajectory, whereas (40) and
(41) ensure that the output trajectory hits the output trajectory
points. (42)-(43) yield the required smoothness conditions on
the trajectory (C2) for the flat transformation. Finally, (43) is
a consequence of the jerk optimality objective and reduces
the degrees of freedom of the resulting optimization problem.

As described in the beginning of this section, we want
to generate quadratic jerk-optimal trajectories. Therefore the
(sub)optimization problem is to solve

argmin
H

(m)
i ,G

(m)
i , i=1..N−1

N−1∑
i=1

(∫ t
(m)
i+1

t
(m)
i,p

[...
y (m)
i (t)2,

...
x(m)
i (t)2

]
dt

)
(45)

s.t. (37)− (44)

for each sample m. In [1] it is shown that the jerk-optimal
output trajectory lies in quintic polynomials. Therefore we
choose (36) to be quintic polynomials for x

(m)
i (t) and

y
(m)
i (t). It follows that (45) again is a sum of polynomials

and can therefore be written as a quadratic program

argmin
z(m)

1

2
z(m)TQz(m) (46)

s.t. Az(m) = b

where

z(m) =
[
H

(m)T
1 , ..,H

(m)T
N−1 , G

(m)T
1 , .., G

(m)T
N−1

]T
. (47)

Theorem 1: Solving (46), which is a reformulation of
(45), yields a jerk-optimal trajectory y(m) regarding the
piecewise definition (21) with quintic polynomials as basis
function.

Verification. First we verify that one must choose quintic
polynomials by contradiction: Suppose each element of
y

(m)
i , i = 1..N − 1, piecewise defined as in (21), is

optimal w.r.t. quadratic jerk but elements of y(m)
i /∈ quintic

polynomials for at least one i. By the principle of optimality
[15], trajectory pieces y(m)

i must be jerk optimal sequences
and therefore quintic polynomials [1]. Secondly, (46) yields
always global optimal state and input conditions at the output

Fig. 6. Example of an output trajectory (purple) calculated for a lane
change maneuver, surrounded by four vehicles. The ego vehicle is shown
in blue and drives initially a bit slower than the car to the left. This scenario
is difficult to solve because the ego vehicle is followed by a slower vehicle,
but the ego vehicle must decelerate in order to catch the gap on the left. On
the other hand, in the left lane there is also a slightly faster vehicle oncoming
from behind that nearly closes the gap within the prediction horizon. The
corresponding state and input trajectory is given in Fig. 7.

trajectory points because Q is positive semidefinite (sum of
squares) and therefore (46) is convex [16].

Algebraic solution of (45): The Lagrange function of (45)
is

L(z(m),ν) =
1

2
z(m)TQz(m) + νT (Az(m) − b). (48)

Here, ν are the Lagrange multipliers in vector form. Since
the problem (45) is convex the Karush-Kuhn-Tucker condi-
tions become sufficient and necessary [16]. From

∂

∂z(m)
L = 0⇒

(
Q AT

A 0

)
︸ ︷︷ ︸

Akkt

(
z(m)

ν

)
=

(
0
b

)
(49)

with ν Lagrange multipliers, we calculate the desired opti-
mum z∗(m). With Akkt having full rank we can solve (49)
efficiently. Note that sampling optimal trajectories without
inequality constraints does not significantly contribute to the
overall runtime: for the example in Sec. VI-A, computing
(49) needs less than 5% of the overall computation time. A
possible (schematic) set of trajectory samples according to
Fig. 5b is illustrated in Fig. 5d.

D. Choose trajectory sample

The last step of the trajectory planning is straightforward.
Based on the trajectory samples we generated, see Fig. 5d,
we choose the best (jerk-optimal) that satisfies all constraints.
Therefore we check every trajectory generated analogue to
[1].

VI. EXPERIMENTS

In Fig. 6 there is a complex lane change maneuver over
time depicted, where the ego vehicle is surrounded by four
cars. We used four action spaces for modelling the free space
and assumed constant acceleration for the neighbouring cars.
We checked the constraints discretized at 50 points of a
single trajectory. We shrink the action spaces based on
minimum/maximum acceleration of the vehicle based on the
current state, and pruned unrealistic output trajectory points
out. The number of trajectories sampled depends on the



Fig. 7. Example of a trajectory calculated for a lane change maneuver,
surrounded by four vehicles. The scene is depicted in Fig. 6.

density of the grid described in Sec. V-B and the pruning
based on the current state. Per planning request 2000-3000
trajectories were sampled.

A. Performance

We used the EIGEN,C++ (http://eigen.
tuxfamily.org, 18.01.16) library for efficient
transformation and trajectory generation. We were able to
sample around 3000 trajectories in the set-up described
above within 50 ms using an off-the-shelf computer. Note,
that we did not parallelize the computations, though it would
be possible to calculate all the samples simultaneously as
well as check their constraints, which is the most expensive
step.

B. Synthetic test

The trajectory planning result according to the scene above
is visualized in Fig. 6 and Fig. 7. The best trajectory is
plotted. The resulting state and input trajectory are depicted
in Fig. 7. Note how the trajectory is planned in the free spaces
resulting from the predictions of the other cars, depicted
with the grey tubes. Therefore the car first decelerates for
the oncoming gap, goes on the left lane in the S-shaped
curve, and again accelerates to the target velocity. Due to jerk
optimality the acceleration profile in Fig. 7 is very smooth
and the full planning time is used for accelerating to the
target velocity.

C. Real world experiment

We successfully tested the concept of the trajectory plan-
ner described above in a real world experiment using the
platform described in [3]. Despite its being usually hard to
test dynamic scenarios in real world experiments, we set up
a typical merge scenario where two busy lanes are merging.
It turned out that the flexibility in how to state the planning
problem using our interface comes in very handy.

VII. CONCLUSION

In this paper we presented a method for abstracting
dynamic objects and static obstacles as time-dependent ge-
ometric bodies allowing us to develop a flexible descrip-
tion of maneuver problems. This enables us to describe
arbitrary trajectory planning problems in structured dynamic
environments. The description has been carefully chosen
to provide all required information for complex maneuvers
without losing generality and simplicity. It turned out that

providing the constraints as a sequence of action-spaces is
the key for efficient solutions of the real-time trajectory plan-
ning problem. This novel concept encapsulates a concrete
behavior decision from the problem of planning a geometric
trajectory. By using this description in terms of planning
we presented a trajectory planner that is flexible and highly
efficient compared to former approaches. This was achieved
by efficient sampling of jerk-optimal trajectories that are
piecewise defined in Cartesian coordinates. Future work will
be on techniques for behavioral decisions as well as more
flexibility in the objective of the trajectory generation.
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