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Abstract

Bayesian Optimization (BO) has become a core method for solving expensive
black-box optimization problems. While much research focussed on the choice of
the acquisition function, we focus on online length-scale adaption and the choice
of kernel function. Instead of choosing hyperparameters in view of maximum
likelihood on past data, we propose to use the acquisition function to decide on
hyperparameter adaptation more robustly and in view of the future optimization
progress. Further, we propose a particular kernel function that includes non-
stationarity and local anisotropy and thereby implicitly integrates the efficiency
of local convex optimization with global Bayesian optimization. Comparisons to
state-of-the art BO methods underline the efficiency of these mechanisms on global
optimization benchmarks.

1 Introduction

Bayesian Optimzation (BO) became an almost ubiquitous tool for general black-box optimization
with high function evaluation cost. A BO algorithm is in principle characterized by two choices: 1)
What is the prior over the objective function? 2) Given a posterior, what is the decision theoretic
criterion, the so-called acquisition function, to choose the next query point? Previous research has
extensively focussed on the second question. In this paper we rather focus on the first question, the
choice of model or prior over the objective function. Clearly, from the purely Bayesian stance the
prior must be given and is not subject to discussion. However, there are a number of reasons to
reconsider this:

Choice of Hyperparameters: In practice, choosing the hyperprior online (e.g. using leave-one-out
cross-validation (LOO-CV) on the so-far seen data) is prone to local optima and may lead to significant
inefficiency w.r.t. the optimization process as already mentioned in [1]. In this paper we take the
stance that if one chooses a point estimate for the hyperprior online, then maximum likelihood only
on the seen data is not an appropriate model selection criterion. Instead, we should choose the
hyperprior so as to accelerate the optimization process.

Choice of kernel function: The squared-exponential kernel is the standard choice of prior. However,
this is in fact a rather strong prior as many relevant functions are heteroscedastic (have different
length-scales in different regions) and have various local optima, each with different non-isotropic
conditioning of the Hessian at the local optimum. Only very few preliminary experiments on
heteroscedastic and non-isotropic models have been reported [2, 3]. In this paper we propose a
novel type of kernel function with the following in mind. Classical model-based optimization of
convex black-box functions [4, Section 8] is extremely efficient iff we know the function to be
convex. Therefore, for the purpose of optimization we may presume that the objective function

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



has local convex polynomial regions, that is, regions in which the objective function is convex
and can reasonably be approximated with a (non-isotropic) 2nd-order polynomial, such that within
these regions, quasi-Newton type methods converge very efficiently. To this effect we propose
the Mixed-Global-Local (MGL) kernel, which expresses the prior assumption about local convex
polynomial regions, as well as automatically implying a local search strategy that is analogous to
local model-based optimization. Effectively, this choice of kernel integrates the efficiency of local
model-based optimization within the Bayesian optimization framework.

1.1 Background

Algorithm 1 General Bayesian optimization

1: procedure GBO(objective f , GP(cµ, k) ,
max. Iterations N , acquisition function α)

2: init X0 = {x01, ...,x0Ni}, x0 ∈ D
3: init y0 = [f(x01), ..., f(x0Ni)]

T

4: n← 1
5: for n ≤ N do
6: perform model adaption
7: xn = argminx∈D αn(x)
8: Xn ← {xn} ∪Xn−1
9: yn ← {f(xn)} ∪ yn−1

10: n = n+ 1
11: end for
12: n∗ ← argminn yn ∈ yN
13: return xn∗ . best observation
14: end procedure

We consider the black-box optimization prob-
lem

x∗ = argmin
x∈D

f(x) (1)

with an objective f : D → R that maps a hyper-
cube
D = {x ∈ Rd | xi ∈ [0, 1] ⊂ R, i = 1, 2, .., d}

(2)
to real numbers. Therefor we use a Gaussian
process (GP) [5] prior over f with constant
prior mean function µ = cµ. Together with
a covariance (kernel) function k(x,x′) we write
GP(cµ, k) for the prior GP in short. A very com-
mon choice of kernel is the squared exponential
(SE) kernel

kSE(x,x′) = σ2
f exp

(
−0.5

||x− x′||2

l2

)
.

(3)
The GP model assumption about f builds the basis for many BO algorithms. A general prototype for
such an algorithm is given in Alg. 1, where αn is the algorithm specific acquisition function. For
experiments we will use the well known and theoretical extensively studied Expected Improvement
(EI) [6] acquisition function. In this work we particurlarly address the choice of k and the model
adaption in Alg. 1, line 6.

1.2 Related work

In [3] they introduce the idea of local length-scale adaption based on maximizing the acquisition
function (EI) value, which is not efficient as they say (and different to the cool down we propose).
Nevertheless we endorse the underlying idea, since it is related to our motivation.

On the model side there are several ideas which yield non-isotropic models by building an ensemble
of local isotropic kernels, e.g. based on trees [7]. We however introduce a specific kernel rather than
a concept of combining kernels or Gaussian processes taylored for improving BO. Another approach
was presented in [8] which relies on a non-stationary input transformation combined with a stationary
kernel for improving performance in case of non-stationary objective functions.

There are also concepts regarding locally defined kernels, e.g. [9]. The idea of [2] is somehow closely
related to ours, because they use a local and a global kernel function, which is a great approach, as
we believe. They parametrize the location of the local kernel as well as the respective parameters.
Consequently they end up with a large number of hyperparameters which makes model selection
very difficult. In constrast to their work we are able to gain comparable or better performance in
well-known benchmarks. At the same time we overcome the problem of many hyperparameters by a
separated, efficient algorithm for determining the location of local minimum regions. Furthermore
we use a non-isotropic kernel for better fitting local minimum regions.

2 Alpha-ratio cool down

In this section we address length-scale adjustment of an isotropic kernel during the optimization
process as part of the general BO Algorithm (Alg. 1, Line 6).
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Let ln−1 be the length-scale used in the previous iteration. In our approach we want to decide whether
to reuse the same length-scale or decrease it to a specific smaller length-scale l̃n < ln−1 in iteration
n. In our experiments we will choose l̃n = max(ln−1/2, l̄n), where

l̄n(d, c̄) =

√
− 1

2 log(c̄)

(
Γ(d2 + 1)

Γ( 3
2 )

π0.5(1−d) 1

n

) 1
d

(4)

is a hard lower bound that encodes a minimal correlation c̄ between sampling points in case of an
approximate uniform sphere packed data set Xn. Since Alg. 1 will not select data in this "explorative
sense" the minimal correlation c̄ will be violated and thus serves as lower bound. We propose to use
the aquisition function as a criterion for the decision to decrease the length-scale. Let

αr,n :=
α∗(l̃n)

α∗(ln−1)
(5)

be the alpha-ratio, where α∗(l) = minx∈D αn(x; l) is the optimal aquisition value when using
length-scale l. In typical situations we expect that αr,n > 1 because the reduced length-scale l̃n
leads to larger posterior variance, which typically leads to larger aquisition values, i.e., more chances
for progress in the optimization process. We turn this argument around: if αr,n is not substantially
larger than 1, then choosing the smaller length-scale l̃n does not yield substantially more chances
for progress in the optimization process. In this case, as a smaller length-scale has higher risk of
overfitting, we decide to stick to the old length-scale ln−1.

In summary, in our alpha-ratio (AR) cool down for length-scale adaption we have a fixed threshold
ᾱr > 1 and choose ln = l̃n as new length-scale if αr,n > ᾱr, and ln = ln−1 otherwise.

3 Mixed-global-local kernel

We assume that each local (global) optimum x∗i of (1) is within a neighbourhood Ui(x∗i ) that can be
approximated by a positive definite quadratic function. More precisely:
Definition 1. Given a data set D = {(xi, yi)}, we call a convex subset U ⊂ D a convex neighbor-
hood if the solution of the regression problem

{β∗0 ,β∗1 , B∗} = argmin
β0,β1,B

∑
k:xk∈U

[
(β0 + βT1 xk +

1

2
xTkBxk)− yk

]2
, (6)

(xk ∈ U the data points in U) has a positive definite Hessian B.

If we are given a set {Ui} of convex neighborhoods that are pair-wise disjoint we define the following
kernel function:
Definition 2. The Mixed-Global-Local (MGL) kernel is given by

kMGL(x,x′) =


kq(x,x

′), x,x′ ∈ Ui,
ks(x,x

′),x /∈ Ui,x′ /∈ Uj
0, else

(7)

for any i, j, where ks is a stationary-isotropic kernel [5] and

kq(x,x
′) = (xTx′ + 1)2 (8)

the quadratic kernel.

This kernel is heteroscedastic in the sense that the quadratic kernels in the convex neighborhood im-
plies fully different variances than the “global” stationary-isotropic kernel around the neighborhoods.

For determining Ui we discretize the search space using the samples as centers for k-nearest-neighbor
(kNN) search. As soon as a kNN tuple of samples satisfy Def. 1, we get a ball shaped local minimum
region candidate. We add a local convergence criteria, that is, the minimum of a local region must
have a minimum distance ε > 0 to any sample. At the end we remove all region candidates that
overlap with better regions.

3



2 4 6 8 10 12

Iteration

-15

-10

-5

0

5

M
ed

ia
n
 l

o
g
1
0
 I

R

Quadratic 2D

2 4 6 8 10 12

Iteration

-10

-5

0

5

M
ed

ia
n
 l

o
g
1
0
 I

R

Rosenbrock

5 10 15

Iteration

-5

-4

-3

-2

-1

0

M
ed

ia
n
 l

o
g
1
0
 I

R

Branin-Hoo

5 10 15 20 25

Iteration

-4

-3

-2

-1

0

1

M
ed

ia
n
 l

o
g
1
0
 I

R

Hartmann 3D

10 20 30 40 50

Iteration

-2

-1.5

-1

-0.5

0

0.5

M
ed

ia
n
 l

o
g
1
0
 I

R

Hartmann 6D

5 10 15 20 25

Iteration

-4

-3

-2

-1

0

1

M
ed

ia
n
 l

o
g
1
0
 I

R

Exponential 3D

5 10 15 20 25

Iteration

-2

-1.5

-1

-0.5

0

M
ed

ia
n
 l

o
g
1
0
 I

R

Exponential 4D

5 10 15 20 25

Iteration

-3

-2

-1

0

M
ed

ia
n
 l

o
g
1
0
 I

R

Exponential 5D

PES

IMGPO

EI

EI AR+MGL

Figure 1: Comparison of recent Bayesian optimization algorithms with synthetic test functions.

4 Empirical results

For all tests we choose the following configurations: We set c̄ = 0.2, ᾱr = 1.5. For the MGL-kernel
(7) we take the SE kernel (3) for ks. We estimated the observation variance σ2

f in (3) and the constant
mean of the prior GP via maximum likelihood and scaled the observation variance down by factor
100 for consistency with the quadratic part of (7) if any local region is detected. For computing Alg. 1
line 7 we first solved the minimization using the ks kernel of (7) and compared it with the results of
the minimization problems using the kq kernel for each local minimum region Ui since all the regions
for the different kernel parts are disjoint. We used three samples as initial design set, chosen by latin
hypercube sampling.

In the following we will often refer to an optimal choice of hyperparameters. By this we mean that
1000 random samples from the respective objective function are taken. On this data an exhaustive
LOO-CV is used to select the length-scale, and max-likelihood to select the prior variance σ2

f and
mean-prior cµ.

In Fig. 1 we report on results using several synthetic benchmark functions. Shown are predictive
entropy search (PES) [10] (which treats hyperparameters in a Bayesian way in the acquisition func-
tion), infinite metric GP optimization (IMGPO) (which uses a Bayesian update for hyperparameters
in each iteration), classical EI with optimal hyperparameters, and EI using our alpha-ratio model
adaption and the MGL-kernel (EI AR + MGL). For all performance tests where we show the log10
median performance (Immidiate Regret (IR)), we made 32 runs and estimated the median variance
via bootstrapping. The errorbars indicate one times the standard deviation. In addition to commonly
considered benchmark functions (Rosenbrock, Branin-Hoo, Hartmann3D, Hartmann 6D) taken from
[11], we show a simple quadratic function in the interval [−2, 2]2 and an exponential function of the
form fexp(x) = 1 − exp(xTCx) with C := diag([100/(d−1), 101/(d−1), .., 10(d−1)/(d−1)]) on the
same interval in respective dimensions d.

The MGL-kernel outperforms significantly in case of the quadratic and the more quadratic like Rosen-
brock objective. Also for Branin-Hoo, Hartmann 6D and Exponential 5D our method significantly
outperforms existing state-of-the-art Bayesian optimization methods. In case of Hartmann 3D, PES
turns out to work better. Nevertheless we want to emphasize the outstanding improvement compared
to plain EI with optimal hyperparameters in every test case.
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