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Abstract: Bayesian Optimization (BO) has become a core method for solving e Pseudo code for adjusting length-scale
expensive black-box optimization problems. While much research focussed 1. calculate lower bound I,,(d, ¢) (Eq. 2)
on the choice of the acquisition function, we focus on online length-scale 2. choose I, + max{l,_1/2,l,(d, ¢}
adaption and the choice of kernel function. Instead of choosing hyperpa- 3. a(lp—1) ¢ mingep an(@;l,—1) acquisition with current length-scale /,,—;
rameters in view of maximum likelihood on past data, we propose to use the 4. o™(lp) < mingep an(; 1) acquisition with 1,
acquisition function to decide on hyperparameter adaptation more robustly 5. arp < o (ln)/a(lp—1) )
and in view of the future optimization progress. Further, we propose a par- 6. based on a threshold on a;, keep lengthscale or reduce to Iy,
ticular kernel function that includes non-stationarity and local anisotropy and e Significant performance improvements in case of model miss-
thereby implicitly integrates the efficiency of local convex optimization with specification: | |
global Bayesian optimization. Comparisons to state-of-the art BO methods 1 1y Counter example function . 05 ——xrelation adaption: Coynter example
underline the efficiency of these mechanisms on global optimization bench- : g .2 0
marks. 05 |1 . |1 E-O.S
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Ideas & Related Work T ER-RH
Lengthscale Cool-Down based on acquisition function (AR) N D W s s B
o Choose hyperprior to accelerate optimization — more acquisition o T e
e Neglect model fit up to a best case correlation lower bound
Mixed-Global-Local (MGL) Kernel Mixed-Global-Local (MGL) Kernel
e A novel kernel function to represent local convex polynomlal regions Formalize the intuition: How to model a (Iocal) minimum?
e Implies optimization steps analogous to classical (quasi-Newton-type) ,
model-based optimization combined with global Bayesian optimization o Given a data set D = {(z;,y;)}, we call a convex subset ¢/ C D a convex
neighborhood if the solution of the regression problem
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e The Mixed-Global-Local (MGL) kernel is given by

Gaussian Processes, NIPS workshop on Bayesian Optimization k(x,x), ¢, 2’ €U,
General Bayesian Optimization kvgL(x, ') =  ky(x, o),z & U, 2’ & U,
0, else

1. Given an initial set of samples { X1,y }, prior GP(c,, k) and acquisition function «

2. iterate n = 1 until N: for any i, j, where k, is a stationary-isotropic kernel and
3. perform model adaption with {X,,, y,} , T 9
4. x, = argmingp an(x) and extend set { X1, y;} by evaluation of objective function at x;, kg, @) = (" 2" + 1)

5. return best observation the quadratic kernel
e Construct ¢; by KNN-search: Start at each sample point and gradually
Length-Scale Cool Down increase K, check KNN for qualifying as i; candidate. Choose best U;’s
: : L e Outperforms even "Optimal” model parameters
Choosing the hyperprior to accelerate optimization __ - 1 MGL kernel Example

e Online length-scale cool down method based on the acquisition function S R ™ .1 ok R MG Kernl| -

instead of model selection, like e.g. using maximume-likelinood N Lo f:i_l_ Optimal
o Let . ) i°2

B oz*(fn) §
Ay o= ()é*<ln_1) (1) ST

be the alpha-ratio, where a*(l) = mingep ay(x; 1) IS the optimal aquisition : . 0.5 1 : 5 oo s 2

with length-scale [ and [, < [,,_; Is a smaller candidate length-scale X {teration
e Typically a smaller length-scale leads to /larger variance = «,.,, > 1

|l Turn this argument around Results

If ,.,, IS not substantially larger than 1, decreasing the length-scale will

typically not yield better chances for progress in the optimization e Results for combined length-scale cool down based on alpha ratio and

e Lower bound based on minimal correlation for "best case” set X, MGL kernel (AR+MGL) vs. Predictive Entropy Search (PES), Infinite
1D search space | 2D search space !\/Iet.rlc (,3|P Optimization (IMGPO), and Expected Improvement (El) with
1 optimal’ chosen hyperparameters
m/b»\ D e Median of 32 runs, variance estimate via Bootstrapping
01 4 < 7 o Software and extended paper version can be found at www.kimpeter.de
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With ¢,,, and a desired best case correlation ¢, we get for the Squared = = =05 =
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