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Abstract— Robotic systems typically have numerous param-
eters, e.g. the choice of planning algorithm, real-valued param-
eters of motion and vision modules, and control parameters.
We consider the problem of optimizing these parameters for
best worst-case performance over a range of environments.
To this end we first propose to evaluate system parameters
by adversarially optimizing over environment parameters to
find particularly hard environments. This is then nested in a
game-theoretic minimax optimization setting, where an outer-
loop aims to find best worst-case system parameters. For
both optimization levels we use Bayesian global optimization
(GP-UCB) which provides the necessary confidence bounds
to handle the stochasticity of the performance. We compare
our method (Nested Minimax) with an existing relaxation
method we adapted to become applicable in our setting. By
construction our approach provides more robustness to perfor-
mance stochasticity. We demonstrate the method for planning
algorithm selection on a pick’n’place application and for control
parameter optimization on a triple inverted pendulum for
robustness to adversarial perturbations.

I. INTRODUCTION

Robotic research has made great steps torwards intelligent
robots in complex environments. At the same time it became
more difficult to efficiently test such autonomous systems
and measure their performance in simulation or real-world
experiments: The main challenge is the high-dimensionality
of the space of potential environment configurations over
which should be tested. Ideally, testing should also aim to
unveil the worst case behavior, that is, find environmental
configurations for which the system performs particularly
poor.

The problem of measuring systems performance was e.g.
addressed for path planning algorithms in form of a generic
testing infrastructure inside the robot operating system (ROS)
[1]. But this approach only handles a finite, predefined
number of test-configurations. There is no framework to
consider an infinite set of environment configurations or
an adversarial automatic testing method that seeks to find
worst cases. To this end, in this paper we first propose
an automatic, active learning-based test framework using
gaussian processes in combination with the upper confidence
bound (GP-UCB) [2]. This method aims to globally optimize
environment configuration parameters to be adversarial, that
is, particularly difficult for the system.

Second, given an efficient method for automatically testing
a system, we can now optimize system parameters (e.g., real-
valued parameters of a path planner or of an object tracker,
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categorial parameters for the choice of planning or percep-
tion algorithms). We will again tackle this by overlaying
another GP-UCB optimization algorithm. In summary, this
paper proposes a coherent framework for optimizing system
parameters w.r.t. worst-case performance, where worst-case
performance is evaluated by an adversarial optimization over
environment parameters.

A. Game Theoretic Problem Formulation

The fundamental idea can be understood as a game
theoretic minimax optimization approach for autonomous
systems. We consider two agents playing a game against
each other. The “Min-Agent” aims to minimize costs, which
corresponds to good robot system performance; whereas the
“Max-Agent” aims to maximize costs and corresponds to
an adversarial environment—represented by the automatic
testing framework that aims to unveil the worst-case perfor-
mance of the robot system (see Fig. 1). Formally, let DE

be the set of modifiable continuous or discrete environment
parameters, e.g. position and orientation parameters of static
objects or dynamic disturbance parameters. Let DS be the
set of modifiable parameters of the intelligent system, e.g.
execution speed, controller parameters or discrete decision
variables like planning-algorithms or higher level configura-
tions. Moreover, assume a noisy black-box function

f(xS ,xE) = f∗(xS ,xE) + ε, ε ∼ N (0, σ2
s) (1)

that quantifies the success (actually cost) of completing the
task in the given environment xE ∈ DE with system xS ∈
DS . We formulate our minimax problem as

x∗S = argmin
xS∈DS

max
xE∈DE

f(xS ,xE) (2)

where x∗S describes the optimal system parameters.

B. Main Contributions

Our contributions are 1) a novel, nested minimax opti-
mization method that exploits the smoothed mean estimator
and confidence bounds (for stopping criteria) provided by
Bayesian global optimization methods; 2) an adaptation of
an existing relaxation method (introduced in the next section)
to make it applicable in our setting and comparable; and
3) the (to our knowledge) first-time application of rigorous
minimax optimization to robotic applications:
a) The minimax optimization of the choice of a path planning
algorithm.
b) The minimax optimization of parameters of a linear
quadratic regulator (LQR) to robustly control a highly non-
linear system (triple inverted pendulum).
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Fig. 1: Basic optimization concept: The Max-Agent provides
a worst-case system evaluation by optimizing adversarial
environment parameters, while the Min-Agent is optimizing
system parameters to minimize the worst case costs.

After revisiting related work we will give an introduction
to the GP-UCB algorithm as a central ingredient to our meth-
ods. We then describe two methods for solving problem (2)
and shortly compare those. The methods are then evaluated
in the experimental section.

II. RELATED WORK

A. Applications

As mentioned before, [1] presents a generic test system
for planning algorithms. This approach takes only a few
predefined scenes into account for the performance test.

Regarding optimization of intelligent or autonomous sys-
tems as a whole there are several classical approaches like
[3]. In [4] they specifically investigate a bayesian based
optimization of a bipedal walking robot. There are very few
optimization approaches that take a changing environment
configuration into account. In [5] a minimax optimization
method is developed for robot design tasks. However, this
approach considers only an analytic performance model in-
stead of take costly and stochastic simulations or experiments
into account.

In contrast to these existing methods we introduce an effi-
cient automatic testing framework which leverages Bayesian
optimization to find adversarial environment parameters and
thereby evaluates the worst-case performance of the system.
This measure is then used for minimax optimization of
system parameters.

B. Efficient Minimax Optimization

The main challenge of problem (2) on the one hand is the
very costly (time consuming) evaluation of the cost function
f . On the other hand there is a reasonable noise in evaluating
f . While there are many approaches to tackle problem
(2) (e.g. [6], [7] and [8]), there are only two approches
so far ([9] and [10] respectively [11]), that would provide
the needed evaluation efficiency by approximating the cost-
function throughout kriging in combination with Expected
Improvement (EI). However, [9] does not support a noisy
cost function. The recent methods [10] respectively [11]
have so far only been tested on toy problems independent
of robotics.

We will compare our approach with a modification of
[10], [11] (combining it with GP-UCB). A core difference is
that our method consistently handles noise when evaluating
system parameters (by computing a mean estimator with
confidence bound in the adversarial optimization) while the
other takes the max over a finite set of noisy evaluations.

III. GLOBAL OPTIMIZATION: MULTI-ARMED BANDITS
AND UPPER CONFIDENCE BOUND ALGORITHM

In order to solve problem (2) we first need an efficient
way to solve general stochastic optimization problems

xopt = argmin
x∈D

f(x) (3)

with an objective function

f(xopt) = f∗(xopt) + ε, ε ∼ N (0, σ2
s) (4)

and a feasible set

D = {x ∈ Rd | xi ∈ [ai, bi] ⊂ R, ai < bi, i = 1, 2, .., d}
(5)

which is a general hypercube. Because in our case f is
very costly to sample and tainted with noise ε, we treat (3)
as a multiarmed bandit problem. Therefore at least some
assumptions on the “black-box” cost functions have to be
made. Namely we assume (4), i.e. the infinitely many armed
bandit is sampled from a Gaussian process (GP, GP(0, k),
see [12]) with zero mean µ = 0 and kernel function k(x,x′)
that defines the correlation between two points x and x′

within the feasible set D. This is not the case in practice but
a fairly good approximation and formally easy to handle.
That stochastic process assumption about f is the basis for
recent global black-box optimization algorithms like the very
promising gaussian process upper confidence bound (GP-
UCB) algorithm [2]. Using noisy samples yT = [y1, .., yT ]T

at points XT = [x1, ..,xT ]T where yt = f(xt) = f∗(xt)+ε
the GP GP(0, k) posterior over f is given by

µT (x) = kT (x)TK∗T
−1yT (6)

kT (x,x′) = k(x,x′)− kT (x)TK∗T
−1kT (x′) (7)

σ2
T (x) = kT (x,x). (8)

kT (x) = [k(x1,x), .., k(xT ,x)]T , kT (x,x′) is the poste-
rior covariance and K∗T = KT + σ2

sI is the positive definite
kernel or covariance matrix [k(x,x′)]x,x′∈XT

.

A. Exploration vs. Exploitation

A general strategy how to sample f in order to learn about
the optimium of f can be expressed as

x∗t = argmin
x∈D

µt−1(x)−
√
βtσt−1(x) (9)

where βt defines an exploration vs. exploitation trade-off
strategy between averagely good regions or bandits (small
µt−1(x)) and not well discovered regions (large “uncer-
tainty” σ(x)). As feasible set we assume a normalized
hypercube

D = {x ∈ Rd | xi ∈ [0, 1] ⊂ R, i = 1, 2, .., d}. (10)



Algorithm 1 Global Optimization using Gaussian Processes
in the bandit-setting and the Upper Confidence Bound

1: procedure GP-UCB(input space: D, function f , GP-
Prior {σs, k}, max. error εerr, exploration policy βt)

2: D∗ ← normalize(D) . using (11).
3: initialize X∗0 = {x0}, x0 ∈ D∗ randomly
4: initialize Y0 = Y ∗0 = [f(x0)]
5: t← 1, εt−1 ← 0, εt ←∞,
6: while |εt − εt−1| > εerr do
7: x∗t = argminx∗∈D∗ µt−1(x∗) +

√
βtσ
∗
t−1(x∗)

8: X∗t ← append x∗t to X∗t−1
9: xt ← denormalize(x∗t ) . using (12).

10: Yt ← append yt = f(xt) to Yt−1
11: Y ∗t = Yt − 1

T

∑T
i=1 yi . centering mean.

12: update GP with X∗t and Y ∗t
13: t = t+ 1
14: calculate εt . stopping criteria, eq. (18).
15: end while
16: x∗opt ← argminx∗∈D∗ µT (x)
17: yGP ← µT (xopt)
18: return [denormalize(x∗opt), yGP + E[YT ]]
19: end procedure

This is crucial when it comes to choosing the GP-Prior in
the next section - otherwise we would have to distinguish
between each input dimension. To normalize a general hy-
percube (5) one can apply the affine transformation

normalize(D) = {x∗ | x ∈ D, x∗i = (ai − bi)−1(ai − xi),
i = 1, 2, ..,dim(D)}

(11)

with its inverse

denormalize(D∗) = {x | x∗ ∈ D∗, xi = (bi − ai)x∗i + ai,

i = 1, 2, ..,dim(D∗)}
(12)

respectively. In [2] a βt according to D is presented which is
proven to provide regret bounds1 in our settings. Therefore:

1) Finite feasible set: If (|D| <∞) choose

βt = 2 log

( |D|t2π2

30

)
. (13)

2) Infinite feasible set: If (|D| ≮∞) choose

βt = 2 log

(
t22π2

15

)
+ 2d log

(
t2d
√

log (20d)
)
. (14)

B. Choosing the GP-Prior

The sampling variance σ2
s can be chosen appropriately to

(4). For practical robustness we use the simple to interpret
squared exponential (SE) kernel [12]. It is defined as

kSE(x,x′) = σ2
f exp

(
−
( ||x− x′||

2lSE

)p)
(15)

1Cumulative regret: RT =
∑T

t1
rt, rt = f(x∗) − f(x), where x∗ =

minx f(x).
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Fig. 2: Visualization of GP-UCB configuration.

where we fix hyperparameters lSE = 0.1 and p = 2 for
aggresive interpolation, see Fig. 2 (a). Note that because of
transforming the input space (11), (12) we implicitly assume
same lengthscales in every dimension. Since the observation
variance σ2

f is crucial we estimate it from the collected
samples using

σ2
f ≈ σ̂2

f,T =
1

T − 1
yTK−1y. (16)

Thus by factoring out σ̂2
f,T we modify the variance posterior

prediction (8) to

σ∗2T (x) = σ̂2
f,T kT (x,x). (17)

C. Stopping criterion
Because in [2] there is no suggestion for a termination

condition we propose

εt =

(
min
x∈D

[µt−1(x)− σt−1(x)]

)
︸ ︷︷ ︸

=:y∗I,t

−
(

min
x∈D

µt−1(x)

)
︸ ︷︷ ︸

=:y∗t

(18)
as an intuitive and expressive stopping criterion. The term
y∗I,t equals exactly the heuristic (9) by choosing βt = 1
uniformly to represent the current optimum plus a potential
improvement of one times the standard deviation. The second
term y∗t represents the mean estimated optimum at round
t − 1. The difference in (18) finally quantifies the potential
improvement to the currently estimated optimum. We stop
sampling further points, if

|εt − εt−1| < εrel, (19)

i.e. the optimistic heuristic value for β = 1 stagnates and
we expect no more dramatic changes by further sampling,
see Fig. 2 (b). The modified GP-UCB algorithm is shown in
algorithm 1. Note that we use σ∗t (x) from eq. (17) instead of
σt(x) (8). A working example of the resulting GP (GP(0, k))
is presented in section V.

IV. MINIMAX OPTIMIZATION APPROACH FOR
AUTONOMOUS SYSTEMS

In this section the main contribution of this paper will be
explained. First we introduce a naive minimax optimization
approach which directly takes the feedback of the efficient
testing algorithm into account. Furthermore we apply the
methods described in [10] and [11] to solve the same
problem. Then we compare the two approaches with respect
to their efficiency.



Algorithm 2 Nested Minimax using the UCB

1: procedure NESTED-MINIMAX(DS , DE , f , {σ, k}S ,
{σ, k}E , εSerr, εEerr)

2: choose βE
t ← (13) or (14) depending on |DE | <∞?

3: choose βS
t ← (13) or (14) depending on |DS | <∞?

4: fExS
(xE)← f(xS ,xE)

5: fS(xs)← GP-UCB(DE , −fExs
, {σ, k}E , εEerr, βE

t )
6: xOPT ← GP-UCB(DS , fS , {σ, k}S , εSerr, βS

t )
7: return xOPT . approximate solution of (2).
8: end procedure

A. Nested Smoothed Minimax Optimization

Algorithm 2 gives a direct nested approach to optimize
system parameters xs ∈ DS for minimal worst-case costs.
Note that this algorithm describes nested optimization loops:
The other GP-UCB optimization loop (line 6) queries in
each iteration the function fS(xs) which is defined as the
optimum of the inner GP-UCB optimization loop in (line
5). fS(xs) corresponds exactly to the worst-case evaluation
of system parameters xs, where the “Max-Agent” finds the
most difficult environment parameters xE by maximizing the
costs f(xs, ·).

Importantly, fS(xs) in line 5 is defined as the mean
estimator of the worst-case cost provided by the inner GP-
UCP loop. This mean estimator is smooth and much more
reliable than a single evaluation from the noisy f ! In our fully
nested approach, the outer optimization loop “perceives” the
cost function only through this worst-case mean-estimator
function fS(xs), i.e., it perceives it through a smoothed and
less noisy function than f itself.

B. Relaxed Minimax Optimization

In [10] and [11] it was proposed to relax problem (2).
“Relaxation” here means that the (adversarial) max is not
really taken over the full infinite space DE of environment
parameters, but only over a small, representative finite set
R ⊂ DE of difficult environments. The key idea is to expand
this representative set incrementally based on what system
parameters have been found so far.

Algorithm 3 describes an implementation of this approach.
The input parameters are the same as in algorithm 2 except
for the desired relative error εRerr. The first representative in
R0 is chosen randomly. While in the nested approach fS

called an inner loop max-optimization GP-UCB to return
the smoothed worst-case mean estimator, here we define
fSR (line 6) to be only the worst case over the finite set
R of representatives. We now iterate: We optimize system
parameters (line 9) w.r.t. this relaxed worst-case evaluation.
Then we find a new adversarial environment parameter
setting xE

t in line 10, which is the worst case for the current
xS
t . This environment parameter xE

t is added to the set Rt

for the next round.
In contrast to the original formulation in [10] and [11],

we use GP-UCB instead of Expected Improvement as core
optimization engine, and we modified the stopping criteria

Algorithm 3 Adapted MiMaReK [10][11], using the UCB,
GP-priors and fixed total iterations for Continiuous Global
Minimax Optimizaion

1: procedure ADAPTED-MIMAREK(DS , DE , f , {σ, k}S ,
{σ, k}E , εSerr, εEerr, εRerr)

2: choose βE
t ← (13) or (14) depending on |DE | <∞?

3: choose βS
t ← (13) or (14) depending on |DS | <∞?

4: initialize R0 = {x0}, x0 ∈ DE randomly
5: fExS

(xR)← f(xS ,xE)
6: fSR(xS)← maxxE∈R f(xS ,xE) . relaxation fcn.
7: initialize t = 1, y0 ← 0, y1 ←∞
8: while |yt − yt−1| > εRerr do . relaxed minimax.
9: xS

t ← GP-UCB(DS ,fSRt
,{σ,k}S ,εSerr,βS

t )
10: [xE

t , yt]← GP-UCB(DE ,−fE
xS

t
,{σ,k}E ,εEerr,βE

t )
11: Rt ← Rt−1 ∪ {xE

t }
12: t = t+ 1
13: end while
14: xOPT ← GP-UCB(DS , fSRt

, {σ, k}S , εSerr, βS
t )

15: return xOPT . approximate solution of (2).
16: end procedure

with great care (as described previously) because the orig-
inally proposed ones would not converge in our practical
applications.

A core issue and difference of this relaxed minimax in con-
trast to our nested smoothed minimax is the handling of the
stochasticity of f . While fS in nested minimax is a smoothed
mean-estimator, fSR is—in the original algorithm—merely
a max over a finite set of noisy cost evaluations. If the
cost evaluations are very noisy, taking the max may become
problematic. We discuss this in more detail in the following.

C. Comparison of Direct and Relaxed Optimization

It is difficult to make general statements about those
two algorithms for practical applications that differ in the
underlaying cost function f(xS ,xE) in a highly nonlinear
matter. Nevertheless the direct minimax approach uses a
smoothed worst-case cost estimator while the relaxed min-
imax algorithm must take the noisy values directly from
the relaxed max-operations. In theory this is not a problem
because GP-UCB in line 9 of Algo. 3 can handle the noise.
But in practice high noise can lead to a large number of total
iterations and to suboptimal system values in every round.
This also leads to a suboptimal environment value that is
taken into account for the following round which causes error
propagation.

For sanity check we tested both approaches on the non-
noisy toy analytical example considered previously in [11].
This shows almost the same performance with slightly less
function calls when enabling hyperparameter optimization
per GP-UCB iteration, see table I where ξ̄2 and T̄ are system
parameters and β̄ is the environment parameter. Adapting the
hyperparameters works well because the underlaying cost
function is analytical without any noise.

While it is very difficult to compare the general per-



ζ̄2 T̄ β̄ f -evaluations
MiMaReK 0.1986 0.861 1.038 640
Nested Minimax 0.1978 0.861 1.0398 606

TABLE I: Analytical example, presented in [11]. Optimized
with both approaches.

formance we can analyze the efficiency with respect to
total function calls of both algorithms. Let us denote the
maximum function calls for system parameter optimization
with Ns := nc + ncUCB where nc is the number of an inital
grid2 and ncUCB denotes the maximum GP-UCB iterations.
The maximum number of GP-UCB iterations with respect
to the environment is denoted by Ne respectively. Then the
actual function calls of f(xS ,xE) in Algorithm 3 in each
iteration t is given by

nMiMaReK(t) =
1

2
Nc + t

1

2
Nc +Ne. (20)

Using
∑T

t=1 t = T 2+T
2 yields the total number of

NMiMaReK(T ) =

T∑
t=1

n(t) = T (
1

2
Nc +Ne) +

T 2 + T

4
Nc

(21)
function calls. Solving the minimax-Problem (2) using algo-
rithm 2 yields

NNested = NcNe (22)

total function calls.
The degree of relaxation in algorithm 3 depends on the

total iterations T (as T → ∞ there is no relaxation). In
theory both algorithms must handle the same function as
Nc, Ne and T goes to infinity. We fix Nc, Ne to the same
value in both algorithms and compute the total iterations of
Mimarek Teq subject to

NNested = NMiMaReK(Teq). (23)

In Fig. 3, Teq is shown over Nc and Ne. It turns out, that
by rising Nc and Ne a large number of Teq can be achieved.
Especially when Ne is large, T increases steeply over Nc.
This is because in eq. (21) NMiMaReK(T ) depends quadratic
on Nc and linear on Ne. Thus the relaxation in Mimarek is
efficient in respect to Ne which also is the reason for the
similar performance of the analytical example presented in
[11] since dimDS = 2 > dimDE = 1.

V. EXAMPLES AND EXPERIMENTS

We first consider a pick’n’place application to demon-
strated efficient automatic adversarial testing and leverage
this to select from a finite set of alternative motion plan-
ning engines of MoveIt!. This reveals which path planning
algorithm works worst-case optimally.

Second, we demonstrate the efficiency of our minimax
methods for finding control parameters for a triple-inverted
pendulum with nonlinear perturbations.

2In the original work [11] a grid can be used for function calls efficiency
enhancements in combination with Expected Improvement.
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Fig. 3: Visualization of possible Teq s.t. (23).

For all experiments we use the termination values εSerr =
εEerr = 0.01 and εRerr = 0.08 for algorithm 2 and algorithm
3 respectively.

A. Pick’n’Place with the PR-2 Robot

As the MoveIt! ROS package3 gets more and more popular
for planning and execution tasks we use it for the realization
of the pick’n’place application. Augmented reality (AR)
markers are used for tagging the object and the desired
goal position in the simulation. Those AR markers are
tracked by the ar-track-alvar module.4 This way a complete
“sense-plan-act” system is considered for testing the planners
(contrary to [1] that only uses an abstract planning scene for
benchmarking).

For picking up and placing the object we use simple
cartesian movements vertically to the object. To move the
object from the pick to the place region we use the planning
and execution methods provided by the MoveIt! interface that
automatically takes the current environment into account for
planning.

Finding an adversarial environment: We apply Algo. 1 to
find adversarial environments with respect to planning and
execution of the pick’n’place application. To this end we
created the scenario shown in Fig. 4(a). The goal position
of the object is on another table to the right of the PR-2
robot. There is also an obstacle on the table which must
be taken into account for planning and execution throughout
MoveIt!. The feasible set DE of environment parameters are
the xobstacle coordinate of the obstacle, shown in Fig. 4(b),
and the xtable coordinate of the table, shown in Fig. 4(c),
within DE = [0, 0] × [0.15, 0.10] meters. As an objective
function we consider the weighted sum

ffeat(xE) =
1

c1
TP +

1

c2
TE +

1

c3
||xobj − xgoal||2 (24)

of the features planning time TP , execution time TE and
squared error between the goal and the object position. The
coefficients c1, c2, c3 are chosen to be the maximum of each
feature multiplied with 3 such that eq. (24) is made up
equally of every feature in the range [0, 1].

Using the default MoveIt! configuration the most adver-
sarial example is given in the first row of table II. More

3http://moveit.ros.org/, checked 3/04/2015.
4http://wiki.ros.org/ar_track_alvar, checked 3/04/2015.

http://moveit.ros.org/
http://wiki.ros.org/ar_track_alvar


(a) Pick’n’place with ob-
stacle set-up.

(b) Bird view: pick’n’place.

(c) Side view:
pick’n’place.

(d) Mean estimator of (24).

Fig. 4: PR-2 Simulation Experiment set-up and result.

Optimum Function calls

Pick’n’Place xE =

[
0.00
0.08

]
22

MiMaReK xS =

[
33.24
45.67

]
,xE =

1.71
1.83
0.47

 696

Nested Minimax xS =

[
38.28
47.57

]
,xE =

1.92
1.78
0.47

 704

TABLE II: 1st row: Optimally adversarial environment pa-
rameters for the pick’n’place evaluation of planners. Rows
2 & 3: Found minimax optima for the control of the triple
inverted pendulum.

interestingly, the corresponding response surface of (24) in
Fig. 4(d), where we plot negative cost on the z-axis, which
is minimized by the adversarial optimization.

Choosing the planning algorithm worst-case optimal:
Now we choose the optimal planner configuration in the
adversarial setting. This implies switching the planning al-
gorithm used in the open motion planning library (OMPL)
inside the MoveIt! package. For this, the system parameters
are elements of the categorial feasible set DS = {0, 1, .., 5},
where each integer identifies a path planning algorithm.
Because the planner ID’s are independent, we must search
for an adversarial environment configuration for every single
path planning algorithm. We solve the minimax optimization
problem by comparing the “Max-Agent” adversarial mean
estimates.

These adversarial mean estimates are shown in table III,
where lower cost value is better (for the system). The “RRT-
Connect” planner works best in “difficult” static pick’n’place
scenes with the PR-2 robot. Remarkable is that the default
planning algorithm “LBKPIECE” performs worst.5

5MoveIt! version 0.5.8

u(t) = a(t)φ1(t)

φ2 (t)

φ3(t)

(a) Triple Inverted
Pendulum.

d̂
d(t)

Tstart Tstart +Tduration
t

md −md

(b) Velocity disturbance
without noise.

Inverted
Pendulum

KT
LQ
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Cost Planner
1.00 Lazy Bi-directional Kinematic Planning

by Interior-Exterior Cell Exploration (LBKPIECE)
0.76 Bi-directional Kinematic Planning by

Interior-Exterior Cell Exploration
0.58 Probabilistic RoadMap
0.54 Rapidly-exploring Random Trees Connect

(RRTConnect)
0.94 Single-query Bi-directional Lazy collision

checking planner
0.81 Expansive Space Trees

TABLE III: Minimax selection of the planning algorithm
with lowest worst-case costs.

B. Controlling a triple inverted pendulum

The inverted pendulum is a commonly used example in
control theory. There is a strong relation to upward walking
robots. As an analytically not accessable control problem we
want to optimize the matrices Q and R of a Linear Quadratic
Regulator (LQR) that stabilizes a triple inverted pendulum
(Fig. 5(a)) along a linearized flatness based feed-forward
trajectory [13]. Starting from the upward position, the goal
is to control the system to make a side step of one meter
within 3.5 seconds, while adhering to additional velocity and
acceleration constraints as well as velocity disturbances of
the cart. For simulation we use the model equation

ẋ(t) = g(x(t), u(t)) (25)

from [14]. Hereby x(t) = [φ(t), v(t), s(t)]T is the system
state where φ(t) denotes pair-wise angles and their time
derivatives φi, φ̇i, i = 1, 2, 3 of the vertical as well as
the velocity and position of the cart v(t) and s(t). The
input u(t) is the cart’s acceleration and is constrained to
|u(t)| ≤ 10 [ms−2]. The position s(t) represents the system
output. s(t) and its time derivate v(t) are constrained to
|s(t)| ≤ 1.3 [ms] and |v(t)| ≤ 2.5 [ms−1] respectively. We
extended the system (25) by an additive perturbation defined
as

d∗(t) = d(t) + εk [ms−1] (26)



(a) Nested minimax. (b) MiMaReK.

Fig. 6: Triple inverted Pendulum mean estimators of max-
optimal cost function (31).

of the carts velocity v(t). The first term of (26), d(t), is
shown in Fig. 5(b) (md is the rising/falling rate) and the sec-
ond, εk, is sampled in discrete time steps (k∆T ,k = 1, 2, ..,
∆T = 1 [s]) from a normal distribution N (0, 0.0016). The
additive velocity perturbation models external disturbances
of the cart. Concerning the adversarial optimization over
environment parameters, we define

xE = [md, Tstart, Tduration]

∈ DE = [0, 0, 0]× [2.0, 2.0, 0.5] .
(27)

As shown in Fig. 5(c) the control concept consits of a direct
feed forward control ud and a desired state trajectory xd

(provided by the flatness based approach [13]) along the
LQR must stabilize the system. We parameterize our LQR
by reweighting precomputed reference matrices Q∗ and R∗,
namely we assume

Q = xQQ
∗, R = xRR

∗ . (28)

Here, Q∗ and R∗ are predefined to

Q = xQdiag([10, 1, 10, 1, 10, 1, 10, 10]), R = xR0.01
(29)

for nominal stability (without perturbation) of a 3.5 second
side step under constraints. The parameter domain for system
optimization is

xS = [xQ, xR]T ∈ DS = [0, 0]× [100, 100] . (30)

The objective function is defined as

f =

∫ t=5

t=0

||xd(t)− x(t)||2dt , (31)

where xd(t) is the desired nominal state trajectory according
to the feed forward control ud(t) without perturbations, along
the LQR must stabilize the perturbated nonlinear system.

The results of the optimization by MiMaReK and by
the Nested approach are both shown in table II. To verify
the minimax optimal results we fix the xS parameters and
perform an expensive optimization of the xE parameters.
It turned out that the result of the Nested approach was
about 3% better than MiMaReK. Both response surfaces
are illustrated in Fig. 6(a) and (b). Thereby the z-axis is
the mean estimated negative cost over system parameters.

I.e. the output of the adversarial inner optimization loop.
While the maximum found by the nested approach was better
than by the relaxed one, Fig. 6(b) shows that the response
surface of the relaxed approach has relatively high values
for low xR values compared to the response surface of the
nested method. This is caused by the “filter” effect the nested
approach gets from the inner loop.

VI. CONCLUSIONS

We established a novel link between efficient automatic
testing and optimization of intelligent systems and general
minimax optimization. This idea lead us to a new minimax
optimization approach, which we compared to a modified
existing minimax optimization method based on relaxation. It
turned out that with very few function evaluations remarkable
results can be achieved. While the relaxed minimax approach
can handle very high dimensional environment sets the
nested approach and its resulting response surface is more
accurate and robust under noise.
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