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Abstract— We present an economic model predictive control
scheme for general nonlinear systems based on a terminal
cost and a terminal constraint set. We study in particular
systems which are optimally operated at some periodic orbit.
Besides recursive feasibility of the control scheme, we provide
an asymptotic average performance bound which is no worse
than the performance value of the system’s optimal periodic
orbit. By means of a certain (strict) dissipativity assumption,
asymptotic convergence to the optimal periodic orbit is shown.
Using a tube-based approach, we extend our method to become
applicable in the presence of unknown but bounded distur-
bances. In addition, we propose the concept of robust optimal
periodic operation and show how it can essentially improve the
closed-loop performance using a simple supply chain network
example.

I. INTRODUCTION
Economic model predictive control (EMPC) schemes dif-

fer from classical stabilizing model predictive control in
terms of their general performance objective function which
does not need to be chosen such that the controller stabilizes
the system state with respect to an a-priori given reference
point or trajectory. However, since the cost can be chosen
arbitrarily, the closed-loop system shows potentially complex
behavior. Despite the important special case of optimal
steady-state operation, as usually considered in economic
MPC analysis [1], [2], [3], in nature, economics, and en-
gineering applications, periodic operation plays a central
role (evolutionary processes, sleeping rhythms, human walk,
engines, or supply chain networks, see e.g. [4]). To this end,
we present an economic model predictive control scheme for
optimal periodic operation (Sec. III) with guarentees in terms
of recursive feasibility, asymptotic average performance and
convergence to the optimal periodic orbit.

In [5], [6], [7] criteria in form of dissipativity inequalities
are provided in order to determine whether or not periodic
operation at a certain periodic orbit is the system’s possibly
best (unique) operational strategy. Given such an orbit, in
[8] an EMPC scheme without terminal constraints is pre-
sented. The authors provide a bound on sub-optimality w.r.t.
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closed-loop asymptotic average performance and practical
convergence guarantees to the optimal periodic orbit in terms
of the online planning horizon. As the planning horizon
tends towards infinity, the error term vanishes and optimal
asymptotic average performance is recovered.

In [7] a method is presented, which is closely related to the
approach presented in this paper. It is based on a terminal re-
gion and terminal cost. Compared to the well-known steady-
state case, the main drawback of the approach is a (strict)
dissipativity assumption for optimality and stability w.r.t. a
certain periodic orbit that might be difficult to verify, even in
a linear, periodic varying setting. We overcome this problem
by relying on dissipativity assumptions that are related to the
case in which steady-state operation is optimal with respect
to a so called P -step system. In particular, we pose a slightly
different dissipativity assumption, which was introduced in
[8]. The different assumption originates from strong duality
of the optimal steady-state optimization problem [9] which
can be easily verified in a linear setting. Transferring this
idea to periodic operation allows for efficient analysis of
asymptotic convergence to the optimal periodic orbit in
the case of piecewise-linear stage cost functions and linear
periodic varying dynamics [10].

In applications, external disturbances can have signifi-
cant impact on the system dynamics. This potentially leads
to poor closed-loop performance and a loss of recursive
feasibility which can cause safety risks. In [11], a robust
economic control scheme was developed for optimal steady-
state operation in order to overcome these problems. Using
our EMPC approach and the respective assumptions, it is
possible to easily combine the concepts of tube based EMPC
and periodic EMPC yielding our second contribution, a tube-
based robust EMPC scheme (Sec. IV) for robustly optimal
periodic operation and for convergence to a neighborhood of
the robust optimal periodic orbit. We illustrate our methods
using a simple supply chain network (Sec. V).

Notation: Let I[a,b] denote the integers in the interval
[a, b] ⊂ R and I≥a = I[a,∞) ∪ {∞}, the set of integers
greater than or equal to a. Define bac with a ∈ R as the
largest integer smaller than or equal to a. Let the distance
between a point x ∈ Rn and a set A ⊆ Rn be defined as
|x|A = infa∈A |x− a|. We denote A× ...×A as AP .

II. PROBLEM SETUP

We consider systems with initial condition x(0) = x,

x(k + 1) = f(x(k), u(k), w(k)), k ∈ I≥0, (1)



with f : Rn × Rm × Rq → Rn s.t. x(k) ∈ X ⊆ Rn and
u(k) ∈ U ⊆ Rm, X and U compact, and unknown but
bounded disturbances w(k) ∈ W ⊂ Rq . Given a control
sequence u = {u(0), ..., u(K)} ∈ UK+1, and a disturbance
sequence w = {w(0), ..., w(K)} ∈ WK+1 we denote the
corresponding solution of (1) by xu = {xu(0, x), ..., xu(K+
1, x)} ∈ XK+2 with initial condition xu(0, x) = x. Consider
a constant disturbance w(k) = 0 for all k ∈ I≥0. Then for
a given x ∈ X the set of all feasible control sequences of
length N ∈ I≥0, denoted by UN (x), is such that u(k) ∈ U
for all k ∈ I[0,N−1] and xu(k, x) ∈ X for all k ∈ I[0,N ].
System (1) is equipped with a stage cost function

` : X× U→ R (2)

that is assumed to be continuous but arbitrary other-
wise (economic). W.l.o.g. assume 0 ≤ infx∈X,u∈U `(x, u).
The overall control goal is to find a feasible input se-
quence such that it minimizes the asymptotic average cost
lim supT→∞

∑T−1
t=0 `(xu(t,x),u(t))

T of the system.

Definition II.1 (Cf. [5]). Consider W = {0}. A set of state
and input pairs Π = {(xp0, u

p
0), ..., (xpP−1, u

p
P−1)} with P ∈

I≥1 is called a nominal feasible P -periodic orbit of system
(1) if xpk ∈ X, upk ∈ U, and xpk+1 = f(xpk, u

p
k, 0) for all

k ∈ I[0,P−2] and xp0 = f(xpP−1, u
p
P−1, 0). It is called a

minimal P -periodic orbit if xpk1
6= xpk2

with k1 6= k2, 0 ≤
k1, k2 ≤ P − 1. The projection of Π on X is denoted by
ΠX = {xp0, ..., x

p
P−1} and on U by ΠU = {up0, ..., u

p
P−1}

respectively. The set of all nominal feasible P -periodic orbits
is SPΠ .

Definition II.2 (Cf. [6]). The P -step system of system
(1) is defined with x̃ = (x0, ..., xP−1) ∈ XP , ũ =
(u0, ..., uP−1) ∈ UP , w̃ = (w0, ..., wP−1) ∈ WP and
x̃(k + P ) = fP (x̃(k), ũ(k), w̃(k)) with

fP (x̃, ũ, w̃)

= (f(xP−1, u0, w0), f(f(xP−1, u0, w0), u1, w1), ..) (3)

and initial condition xP−1(0) = x ∈ X 1. Given an initial
state x, a control and disturbance sequence u ∈ UPK and
w ∈WPK , K ∈ I≥1, the corresponding solution is denoted
by

x̃u(k, x) = (xu(k − P + 1, x), .., xu(k − 1, x), xu(k, x))

(with partially undefined states in case k < P − 1), which
implies x̃u(k + P, x) = fP (x̃u(k, x), ũ, w̃) and x̃u(k +
1, x) 6= fP (x̃u(k, x), ũ, w̃). The stage cost function for the
P -step system is given by

˜̀(x̃, ũ) =

P−1∑
i=0

`(xũ(i, xP−1), ui). (4)

1Initial conditions of other states are not relevant for the solution. Fur-
thermore, the time indexing x̃(k+P ) = fP (x̃(k), ũ(k), w̃(k)) simplifies
the change between the P -step system notation and the original system
notation.

The distance between a state and input pair (x̃, ũ) and a
nominal P -periodic orbit Π of system (1) is defined as

|(x̃, ũ)|Π =

P−1∑
i=0

|(xũ(i, xP−1), ui)|Π , (5)

and |x̃|ΠX =

P−1∑
i=0

|xũ(i, xP−1)|ΠX . (6)

Remark II.3. Any nominal periodic orbit Π ∈ SPΠ of system
(1) is an equilibrium point of the P -step system.

III. ECONOMIC MPC FOR PERIODIC OPERATION

Consider system (1) without disturbances, that is, w(k) =
0 for all k ∈ I≥0, and SPΠ non-empty. Given a state x̃, the
operator (.)P−1 picks the last element of x̃: (x̃)P−1 = xP−1.

Assumption III.1. Let (xpi , u
p
i ) ∈ Π for i ∈ I[0,P−1]. There

exists a compact set Xf ⊆ X s.t. ΠX ∈ Xf , a feedback law
κ̃f : XP → UP , and a continuous terminal cost Vf : Xf →
R s.t. for all x̃ with xP−1 ∈ Xf it holds:

1) κ̃f (x̃) ∈ UP ;
2) fP (x̃, κ̃f (x̃), 0) ∈ XPf ;

3)
Vf ((fP (x̃, κ̃f (x̃), 0))P−1)− Vf ((x̃)P−1)

≤ −˜̀(x̃, κ̃f (x̃)) + ΣP−1
i=0 `(x

p
i , u

p
i ).

Without loss of generality, let Vf (x) ≥ 0 ∀x ∈ Xf .

Since a P -periodic orbit becomes a steady-state for the
P -step system, the terminal configuration is conceptually
related to the steady-state case. This differs from designing
a family of P one-step terminal controllers and P terminal
cost functions as proposed in [7, Ass. 5.5]. By considering
a P -step controller, we only require a decrease in the cost
once a period is completed, compare Ass. III.1 3).

Remark III.2. By reformulating the terminal assumption
(Ass. III.1) such that the last P system states (instead of
just using xP−1) are contained in a terminal set X̃f ⊂ XP
together with a corresponding terminal cost function Ṽf :
X̃f → R, the subsequent results still apply. In this modified
setting it would be straight-forward to use the results from the
steady-state case [2] in order to fulfill Ass. III.1 with respect
to a specific phase of the optimal periodic orbit. However,
this modification comes at the cost of constraining the last
P system states w.r.t. X̃f .

Let N = N1P with N1 ∈ I>0. Define the open loop
optimization problem

(PEMPC−P)



minu∈UN JMPC(x,u)

s.t. for all k ∈ I[0,N−1] :

xu(k + 1, x) = f(xu(k, x), u(k), 0)

xu(k, x) ∈ X
u(k) ∈ U
xu(N, x) ∈ Xf
xu(0, x) = x



Algorithm 1 Economic MPC for optimal periodic operation
1: procedure EMPC-P(initial state x = x(0))
2: for k1 = 0, 1, ... do
3: solve (PEMPC−P) with x = xcl(k1P, x)
4: apply the first P inputs of u∗(k1P ) to system (1)

with finite time open loop cost functional

JMPC(x,u) =

N−1∑
k=0

`(xu(k, x), u(k)) + Vf (xu(N, x)) (7)

which can be rewritten as
∑N/P−1
k=0

˜̀(x̃u(kP, x), ũ(kP )) +
Vf (xu(N, x)) and will be solved for u =
(u(0), u(1), .., u(N − 1)) every P -time steps k1P ∈ I≥0

using the current system state x = x(k1P ), see Alg.
1. Starting from an initial state x = x(0), denote the
closed-loop system inputs and states by ucl(t) and xcl(t, x)
for t ∈ I≥0. In terms of the corresponding P -step
system we write ũcl(t) = (ucl(t), ..., ucl(t + P − 1)) and
x̃cl(t, x) = (xcl(t− P + 1, x), .., xcl(t− 1, x), xcl(t, x)).

Remark III.3. Alg. 1 defines a P -step EMPC scheme. Since
it operates in open loop for P time steps, robustness with
respect to perturbations reduces compared to e.g. [7]. We
can overcome this problem as proposed in [8, Rem. 6], by
periodically time varying the prediction horizon. Therefore
solve (PEMPC−P) at each time step t with N replaced by
N − (t mod N), in which t indicates the real systems
time, and apply only the first input to the system each time
step. By the dynamic programming principle, this does not
influence the subsequent results, but will in general lead
to an improvement in robustness against uncertainties and
disturbances, see [12].

Assumption III.4. The optimization problem (PEMPC−P) is
feasible at time t = 0 for x = x(0).

Let the optimal input sequence of (PEMPC−P) with re-
spect to x be denoted by u∗(x) = (u∗(0, x), .., u∗(N−1, x))
with corresponding optimal states xu∗(x)(k, x) for k ∈ I[0,N ]

and xu∗(x)(0, x) = x.

Theorem III.5. If Ass. III.1 and Ass. III.4 hold, then Alg. 1
is recursively feasible.

Proof. Based on the optimal solution u∗(x(t)) (Ass. III.4)
calculated at time t, define the candidate P -step system input
sequence at time τ = τ1P ∈ I≥t as

˜̄ut(τ) =


(u∗(τ − t, x(t)), ..., u∗(τ − t+ P − 1, x(t))),

τ ∈ I[t,t+N−P ]

κ̃f (x̃ū(τ, x)) , else,
(8)

where we denote the system states, resulting from applying
(8), by xū(k, x), k ∈ I≥t, with xū(0, x(t)) = x(t) and
corresponding P -step state x̃ū(t, x(t)) = (xū(t − P +
1, x(t)), .., xū(t− 1, x(t)), xū(t, x(t))). Consider

ūt(k) = (˜̄ut(k), ˜̄ut(k + P ), ..., ˜̄ut(k +N − P )) (9)

as candidate input trajectory for k ∈ I≥t based on the
optimal solution at time t. It constitutes a recursively feasible,
suboptimal solution to (PEMPC−P), because by Ass. III.1
for x̃ with (x̃)P−1 ∈ Xf we have κ̃f (x̃) ∈ UP and positive
invariance with respect to XPf ⊆ XP .

Under our different terminal assumption (Ass. III.1), com-
pared to [7] we are able to state the same performance
guarantees as given in [7, Rem. 5.8].

Corollary III.6. Let Ass. III.1 and Ass. III.4 hold, then under
application of Alg. 1 the closed-loop system has an average
performance which is no worse than that of the optimal
periodic orbit Π, i.e.

1

P

P−1∑
k=0

`(xpk, u
p
k) ≥ lim sup

T→∞

∑T−1
k=0 `(xcl(k, x(0)), ucl(k))

T

with (xpi , u
p
i ) ∈ Π for i ∈ I[0,P−1].

Proof. The proof follows along the lines of [2, Thm. 18].

A. Convergence to the optimal periodic orbit

Assumption III.7. There exists a continuous storage func-
tion λ̃ : RnP → R and a K∞ function α s.t. system (3) is
strictly dissipative in the sense of [5, Def. 1] , i.e.

λ̃(fP (x̃, ũ, 0))− λ̃(x̃) ≤ s(x̃, ũ)− α(|(x̃, ũ)|Π) (10)

with supply rate s(x̃, ũ) = ˜̀(x̃, ũ)−
∑P−1
k=0 `(x

p
k, u

p
k).

Remark III.8. Consider systems of the type

x(k + 1) = A(k)x(k) +B(k)u(k) (11)
Axx(k) ≤ bx, ∀k ∈ I≥0 (12)
Auu(k) ≤ bu, ∀k ∈ I≥0 (13)

with time-varying, P -periodic matrices A(k) = A(k +
P ), A(k) ∈ Rn×n, B(k) = B(k + P ), B(k) ∈ Rn×m and
a continuous, convex, piece-wise linear stage cost function
`(x, u). According to Rem. II.3, a P -periodic optimal orbit
is obtained by solving

(Porbit)

minx̃∈XP ,ũ∈UP
˜̀(x̃, ũ)

s.t. x̃ = fP (x̃, ũ, 0).

The corresponding Lagrangian reads

ν̃T (x̃− fP (x̃, ũ, 0)) + ˜̀(x̃, ũ)−
P−1∑
k=0

`(xpk, u
p
k).

It can be easily verified that the optimal dual variables ν̃∗

define a valid, linear storage function λ̃(x̃) = ν̃∗>x̃. Further,
it can be shown that if and only if (Porbit) has a unique
solution (can be formulated as LP [13]), strict dissipativity
holds [10].

For the purpose of analysis, we define the rotated stage
cost L̃(x̃, ũ) = s(x̃, ũ) + λ̃(x̃)− λ̃(fP (x̃, ũ, 0)), the rotated
P -step terminal cost Ṽf (x̃) = Vf ((x̃)P−1) + λ̃(x̃) with
(x̃)P−1 = xP−1, and the auxiliary objective Jaux(x,u) =∑N/P−1
k=0 L̃(x̃u(kP, x), ũ(kP )) + Ṽf (x̃u(N, x)).



Lemma III.9. Solving (PEMPC) using the rotated objective
Jaux yields the same minimizer as in the case of JMPC.

Proof. Analogous to [2] it can be shown that Jaux(x,u) =
JMPC(x,u) + c for some c ∈ R.

Lemma III.10. For all x̃ ∈ {x̃ ∈ XP |xP−1 ∈ Xf} it holds
Ṽf (fP (x̃, κ̃f (x̃), 0))− Ṽf (x̃) ≤ −L̃(x̃, κ̃f (x̃)).

Proof. By Ass. III.1 for x̃ ∈ {x̃ ∈ XP |xP−1 ∈ Xf} it holds
Vf ((fP (x̃, κ̃f (x̃), 0))P−1)− Vf ((x̃)P−1) ≤ −˜̀(x̃, κ̃f (x̃)) +∑P−1
k=0 `(x

p
k, u

p
k). Adding −λ̃(x̃) + λ̃(fP (x̃, κ̃f (x̃), 0)) on

both sides yields Vf ((fP (x̃, κ̃f (x̃), 0))P−1)−Vf ((x̃)P−1)−
λ̃(x̃) + λ̃(fP (x̃, κ̃f (x̃), 0)) ≤ −L̃(x̃, κ̃f (x̃)), where the left
hand side equals Ṽf (fP (x̃, κ̃f (x̃), 0))− Ṽf (x̃).

Consider in the following XN = {x ∈ X|∃u ∈
UN (x) s.t. xu(N, x) ∈ Xf}, i.e. the set of states for which
(PEMPC−P) is feasible.

Lemma III.11. For all x ∈ XN , k ∈ I≥0 it holds that

Jaux(xcl(kP + P, x), ūkP (kP + P ))

− Jaux(xcl(kP, x),u∗(xcl(kP, x)))

≤− α (|x̃cl(kP, x), ũcl(kP )|Π) .

Proof. Using the auxiliary objective we have by Lem.
III.10 that for all k ∈ I≥0 it holds Jaux(xcl(kP +
P, x), ūkP (kP + P ))− Jaux(xcl(kP, x),u∗(xcl(kP, x))) ≤
−L̃(x̃cl(kP, x), ũcl(kp)). Using the strict dissipativity in-
equality from Ass. III.7 completes the proof.

Theorem III.12. Let Ass. III.1, III.4, and III.7 be satisfied. If
x(0) ∈ XN then the closed loop system resulting from appli-
cation of the P -step MPC controller (Alg. 1) asymptotically
converges to the optimal periodic orbit Π.

Proof. Under application of Alg. 1 we have along the closed
loop system by Lem. III.11

Jaux(xcl(t+ P, x),u∗(xcl(t+ P, x)))

− Jaux(xcl(t, x),u∗(xcl(t, x)))

≤Jaux(xcl(t+ P, x), ūt(t+ P ))

− Jaux(xcl(t, x),u∗(xcl(t, x)))

≤− α(|x̃cl(t, x), ũcl(t)|Π), (14)

i.e. that the sequence Jaux(xcl(t, x),u∗(xcl(t, x))) is nonin-
creasing with t. It is bounded from below, since the stage
cost function L(., .) in (2) and terminal cost function Vf (.) in
Ass. III.1 are continuous and both, XN and Xf are compact.
Therefore the sequence converges, which implies by (14) that
α(|x̃cl(t, x), ũcl(t)|Π)→ 0 as t→∞. Using (5) this implies
also that the system follows exactly the optimal periodic orbit
Π for t→∞ which completes the proof.

IV. ROBUST EMPC FOR PERIODIC OPERATION

Based on [11] we extend the EMPC scheme from the
previous section to be applicable under the presence of

disturbances w(k) ∈ W, W compact, using a tube-based
approach, see e.g. [14]. Define the nominal system as

z(t+ 1) = f(z(t), v(t), 0), z(0) = z (15)

and let the error between the real, disturbed system state x(t)
and the nominal system state z(t) be e(t) = x(t) − z(t).
Further let

u(t) = φ(v(t), x(t), z(t)) (16)

be an error feedback in order to keep the real system
state x(t) close to the nominal system state z(t). The error
dynamics is then defined as

e+ = f(x, φ(v, x, z), w)− f(z, v, 0). (17)

Definition IV.1 (Cf. [11]). A set Ω ⊆ Rn is robust control
invariant (RCI) for the error dynamics (17) if there exists
a feedback law (16) such that for all x(t), z(t) ∈ Rn with
e(t) ∈ Ω and x(t) ∈ X, φ(v(t), x(t), z(t)) ∈ U and for all
w ∈W it holds that e(t+ 1) ∈ Ω.

The concept of tube-based robust model predictive control
is to perform the open-loop optimization for the nominal
system and then apply the input according to (16) to the
real system. This way we guarantee that the real, disturbed
system state x(t) will always stay within a compact RCI set
Ω around the nominal, calculated (predicted) states z(t). In
order to guarantee that (x, u) ∈ X× U under application of
(16), we must tighten the state and input constraints X and
U of (15) as in [11] to Z̄ = {(z, v) ∈ X×U|(x, φ(v, x, z)) ∈
X×U for all x ∈ {z}⊕Ω}. In the following we denote the
projection of Z̄ on X as X̄ and Z̄ on U as Ū respectively.

Assumption IV.2. There exists a function φ : Ū×X×X̄→ U
and an RCI set Ω according to Def. IV.1.

A. Robust optimal periodic operation

Using the concept of an integrated stage cost function [11]

`int(z, v) =

∫
x∈{z}⊕Ω

`(x, φ(v, x, z))dx, (18)

we define the robust optimal periodic orbit.

Definition IV.3. The robust optimal periodic orbit Π∗ with
optimal period length P ∗ of system (1), (2) is defined as

argmin
P∈I≥1,Π∈SP

Π

P−1∑
i=0

(∫
x∈{zpi }⊕Ω

`(x, φ(vpi , x, z
p
i ))dx

)
(19)

with (zpi , v
p
i ) ∈ Π∗, Ω an RCI set, and minimal P ∗.

Note, that the RCI set can be seen as an outer approxima-
tion of the real system’s behavior for all possible disturbances
in W. Thus, the stage cost function is integrated over the
RCI set Ω, centered at the nominal state in order to take
the influence of the disturbance into account. This can be
also seen as averaging over all possible disturbances. Next,
we define under which condition such a periodic orbit is the
system’s possibly best operation.



Definition IV.4. System (1) is said to be robustly optimally
operated at the periodic orbit Π with respect to the stage cost
(2) and the constraints x ∈ X and u ∈ U if for any feasible
nominal input sequence v and its associated nominal state
sequence zv it holds that

lim inf
T→∞

∑T
t=0 `

int(zv(t, z(0)), v(t))

T
≥ 1

P

P−1∑
k=0

`int(zpk, v
p
k),

with (zpk, v
p
k) ∈ Π.

We can state a similar sufficient condition as in [5, Cor.
14], which implies that a robust optimal periodic orbit Π is
indeed the systems possibly best operation w.r.t. Def. IV.4.

Theorem IV.5. Consider system (1) and let Ω be an RCI set
for the associated error dynamics (17). If the nominal system
(15) is dissipative with respect to the periodic orbit Π and the
integrated stage cost function (18), i.e. there exists a storage
function λ̃ : RPn → R such that for all z̃ ∈ X̄P , ṽ ∈ ŪP

λ̃(fP (z̃, ṽ, 0))− λ̃(z̃) ≤ ˜̀int(z̃, ṽ)−
P−1∑
k=0

`int(zpk, v
p
k) (20)

with (zpk, v
p
k) ∈ Π, k ∈ I[0,P−1], then system (1) is robustly

optimally operated at Π according to Def. IV.4.

Proof. The statement follows directly from [5, Cor. 13].

B. Tube-based robust economic MPC for periodic operation

We modify Ass. III.1 such that we can transfer the ideas
from Sec. III to the robust setting.

Assumption IV.6. Let (zpi , v
p
i ) ∈ Π for i ∈ I[0,P−1]. There

exists a compact set X̄f ⊆ X̄ s.t. ΠX ∈ X̄f , a feedback law
κ̃f : X̄P → ŪP , and a continuous terminal cost V̄f : X̄f →
R s.t. for all z̃ with zP−1 ∈ X̄f it holds:

1) κ̃f (z̃) ∈ ŪP ;
2) fP (z̃, κ̃f (z̃), 0) ∈ X̄Pf ;

3)
Vf ((fP (z̃, κ̃f (z̃), 0))P−1)− Vf ((z̃)P−1)

≤ −˜̀int(z̃, κ̃f (z̃)) + ΣP−1
i=0 `

int(zpi , v
p
i ).

Without loss of generality, let V̄f (z) ≥ 0 ∀z ∈ X̄f .

Let N = N1P , N1 ∈ I>0 and define the nominal open

Algorithm 2 Robust EMPC for periodic operation
1: procedure REMPC-P(initial state z = x(0))
2: for k1 = 0, P, 2P, .. do
3: solve (PREMPC-P) with z = zcl(k1, z)
4: for k2 = k1, k1 + 1, .., k1 + P − 1 do
5: ucl(k2) = φ(v∗,k1(k2), xcl(k2, x(0)), zcl(k2, z))
6: vcl(k2) = v∗,k1(k2)

loop optimization problem with integrated stage cost as

(PREMPC-P)



minv∈ŪN J int
MPC(z,v)

s.t. for all k ∈ I[0,N−1] :

zv(k + 1, z) = f(zv(k, z), v(k), 0)

(zv(k, z), v(k)) ∈ Z̄
zv(N, z) ∈ X̄f
zv(t)(0, z) = z

with finite time open loop cost functional

J int
MPC(z,v) =

N−1∑
k=0

`int(zv(k, z), v(k)) + V̄f (zv(N, z)).

Assumption IV.7. The optimization problem (PREMPC−P)
is feasible at time t = 0 for z = x(0).

Theorem IV.8. If Ass. IV.2, IV.6 and IV.7 hold, then Alg.
2 is recursively feasible and the closed-loop system has an
asymptotic average performance which is no worse than that
of the robust optimal periodic orbit Π, i.e.

1

P

P−1∑
k=0

`int(zpk, v
p
k) ≥ lim sup

T→∞

∑T−1
k=0 `

int(zcl(k, z(0)), vcl(k))

T

with (xpi , u
p
i ) ∈ Π for i ∈ I[0,P−1].

Proof. Recursive feasibility w.r.t. the nominal system (15)
can be shown as in Thm. III.5. By standard tube-based MPC
arguments, recursive feasibility w.r.t. to the real system (1)
follows from Ass. IV.2 and application of (16) to system (1).
The second statement follows directly from Cor. III.6.

Assumption IV.9. There exists a continuous storage function
λ̃ : RnP → R and a K∞ function α s.t. system (3) is strictly
dissipative according to (20) w.r.t. the periodic orbit Π .

Consider X̄N = {z ∈ X̄|∃v ∈ ŪN (z) s.t. zv(N, z) ∈
X̄f}, i.e. the set of states for which (PREMPC−P) is feasible.

Theorem IV.10. Let Ass. IV.2, IV.6, IV.7 and IV.9 be satisfied.
If x(0) ∈ X̄N , then the closed loop system resulting from
application of the P -step robust MPC controller (Alg. 2)
asymptotically converges to the neighborhood ΠX⊕Ω of the
robust optimal periodic orbit Π.

Proof. For the nominal system (15) it follows as in Thm.
III.12 that (zcl(t, x(0)), vcl(t)) → Π for t → ∞. By
definition it holds xcl(t, x(0)) = zcl(t, x(0)) + ecl(t, 0) and
by Ass. IV.2 we have that ecl(t, 0) ∈ Ω for all t ∈ I≥0. This
shows that xcl(t, x(0))→ ΠX ⊕ Ω as t→∞.

V. EXAMPLE

We aim at controlling the simple supply chain network in
Fig. 1 economically, see [10] for a more detailed explanation
of the model, which we will describe briefly in the following.
The state xS,1(k) ∈ R represents the number of goods in
the supplier production process, xS,2(k) ∈ R in the supplier
storage, xT,L(k) ∈ R in the truck, xR(k) ∈ R in the retailer
storage and xT,P (k) ∈ {0, 1} describes the truck position.
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Fig. 1. Illustration of the simple supply chain network example.

Inputs are represented using the truck navigation uT,P ∈
{0, 1} (0:stay; 1:drive), the truck loading of goods uT,L ∈
R, and the supplier production request uS ∈ R as well as
external disturbances w ∈W. Let

xS,1(k + 1)
xS,2(k + 1)
xT,P (k + 1)
xT,L(k + 1)
xR(k + 1)

 =


0 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

=:A


xS,1(k)
xS,2(k)
xT,P (k)
xT,L(k)
xR(k)


︸ ︷︷ ︸

=:x(k)

+


0
0

fT,P (xT,P (k), uT,P (k))
0
0


︸ ︷︷ ︸

=:fG(x(k),u(k))

+Bσ(k)

[
uS(k)
uT,L(k)

]
︸ ︷︷ ︸

=:uB(k)

+w(k)

describe the dynamics with uniformly distributed distur-
bances w(k) ∈ {w ∈ R5|w0 = w1 = w2 = w3 = 0, w4 ∈
I[−3,−1]}. The function fT,P encodes the dynamics of the
position of the truck on the graph, see Fig. 1. The matrices
Bσ(k) ∈ {B0, B1} are given as

B0 =

[
1 0 0 0 0
0 −1 0 1 0

]>
, B1 =

[
1 0 0 0 0
0 0 0 1 −1

]>
,

with the switching policy σ(k) = xT,P , and constraints 0 ≤
xS,1 ≤ a, 0 ≤ xS,2 ≤ a, 0 ≤ xT,L ≤ 10,−a ≤ xR ≤ a, with
a ∈ R, a > 100. The stage cost is defined as

`(x, u) =

{
xS,1 + 0.5xS,2 + xT,L + uT,P − 10xR, xR < 0

xS,1 + 0.5xS,2 + xT,L + uT,P + xR, xR ≥ 0.

A larger demand than available goods (negative number of
goods), means, that customers reach out for the store but
they get disappointed, because the product they wish to buy
is not available. This results in unhappiness of the customers
which makes it more likely that they will go to another store
the next time. Therefore we decide on a high penalty for
negative number of goods. The optimal periodic orbit under
the nominal demand w4 = −1 is

P ∗ = 2,Π∗ =






2
0
0
0
1

 ,
1

2
0


 ,




0
0
1
2
0

 ,
 1
−2
2



 (21)

with average cost 1
2

∑1
k=0 `(x

p∗
k , u

p∗
k ) = 3.5.

A. EMPC for periodic operation

It can be verified (see [10] for details) that (21) fulfills
Ass. III.7 by leveraging strong duality arguments of the
optimal periodic orbit with respect to the system dynamics as
described in Rem. III.8 by investigating different trajectories
of the truck. Note that we were not able to establish a relation
between [7, Ass. 5.3] and strong duality, neither could we
guess a periodic storage function as required in order to
properly apply the EMPC scheme [7].

For Ass. III.1 choose, as explained in [10],

Xf = X ∩




xS,1 = 0
xS,2 = 0
xT,P = 1

xT,L = 2− xR
xR ≤ 0

 ∪

xS,1 = 2
xS,2 = 0
xT,P = 0
xT,L = 0
xR = 1



 ,

κ̃f (x̃) =



 1

xR − 2

2− xR − xT,L + xS,2

 ,
1

2

0


 , xT,P = 1

([1, 2, 0]>, [1,−2, 2]>), xT,P = 0

with x̃ = ((∗), x), (∗) ∈ R5 and terminal cost Vf (x) =
xT,P (−11xR). Note that Xf is a manifold, rather than a
set of states, contained in the periodic orbit. A particular
advantage of our approach is that Ass. III.1 has to be satisfied
only over a period, while [7] poses a terminal assumption
which has to hold for each time-step. The latter might be
less intuitive to construct for the given example at hand. In
Fig. 2, a sample closed-loop simulation of Alg. 1 is shown
with constant nominal disturbance w4 = −1 and x(0) =
[1, 1, 1,−4,−4]>.

B. Robust EMPC for periodic operation

For constructing the tube (Ass. IV.2) let

φ(v, x, z) =

{
[vT,L − eT , vS ]>, xT,P = 0

[vT,L + eR, vS − eR]>, xT,P = 1,
(22)

as in [10], which yields the RCI set Ω = {x ∈
R5|[0, 0, 0,−4,−4]> ≤ x ≤ [4, 0, 0, 0, 0]>}. Solving (19)
using Ω yields the robust optimal periodic orbit

P = 2,

Π ≈






2
0
0
4

4.2727

 ,
1

2
0


 ,




0
0
1
6

3.2727

 ,
 1
−2
2



 .

It can be shown as in the nominal case that Π fulfills Ass.
IV.9. The terminal configuration from the previous section
can be easily modified in order to fulfill Ass. IV.6, see [10].

Using a closed-loop simulation under uniformly dis-
tributed disturbances we calculated the average performance
over 4000 simulation steps in Tab. I. We compare our results
to the method proposed in [8]. With Alg. 1 and a 33.3%
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Fig. 2. Closed-loop distance to optimal orbit Alg. 1 without disturbances.

smaller planning horizon we get already the same perfor-
mance as with the unconstrained algorithm [8]. In case of the
mixed integer problem structure, a larger planning horizon
results in a harder optimization problem (more discrete
variables) compared to the additional terminal constraints
with a shorter horizon. The tube-based approach (Alg. 2)
yields an essential performance improvement.

VI. CONCLUSIONS

Based on the P -step system concept we developed an
EMPC scheme for optimal periodic operation. This allowed
us to establish performance guarantees and asymptotic con-
vergence to the optimal periodic orbit. Moreover, for pe-
riodically time-varying systems and piece-wise linear stage
cost, convergence to the optimal periodic orbit can be verified
systematically under our assumptions. Based on the resulting
EMPC scheme, we presented a tube-based extension, in order
to consider the presence of disturbances explicitly for better
performance and strict feasibility. We illustrated our findings
using a simple supply chain network.

REFERENCES

[1] D. Angeli, R. Amrit, and J. B. Rawlings, “Receding horizon cost
optimization for overly constrained nonlinear plants,” in Decision and
Control, 2009 held jointly with the 2009 28th Chinese Control Con-
ference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference
on. IEEE, 2009, pp. 7972–7977.

[2] R. Amrit, J. B. Rawlings, and D. Angeli, “Economic optimization
using model predictive control with a terminal cost,” Annual Reviews
in Control, vol. 35, no. 2, pp. 178–186, 2011.

[3] M. A. Müller, D. Angeli, and F. Allgöwer, “On necessity and ro-
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